
Wikipedia Network Visualizer

and Analysis

Architecture

Network Analysis

Data Collection

Wikipedia is one of the worlds largest publicly available

network structures. With articles as nodes, and the links

between them as edges, we allow people to visualize and

interact with this network through our website : WikiConnect.

Tremayne Booker, Jared Vitug
Department of Computer Science and Engineering. Project Adviser : Frank Witmer

4/28/2023

Homepage: This is where users are directed when first visiting the site.
Gives a brief description of the website and an example graph.

Mobile Version : A view of the mobile version of the
website. All of the features work well within mobile and

desktop.

An example network generated starting from the “National
Football League”. The first connections are 1920 APFA season,
1921 APFA season, 1922 APFA season, etc. before sprawling
outwards

The website has two main compononents : the front

end and back end which interact with each other by

passing JSON files via flask.

The front end is coded mostly in Javascript.

Stylization was done with “bootstrap” and

“fontawesome”. Although most of the heavy-lifting was

through the plugin “Cytoscape”. Cytoscape is a plugin

that allows for a multitude of options to represent data

as networks. Our graphs use the “Cola” layout.

Cytoscape uses force-simulations to animate the

graphs as they are generated or moved, with the cola

layout giving control over these simulations. The

graphs also require two other plugins, “Popper” and

“Tippy” to create info boxes when hovering over

nodes.

The back end is mostly in python. It handles requests

for data. Whenever the front end needs to create a

graph, it asks the back end what data is required to

create it. It does so by collecting data from

Wikipedia’s API.

These are connected by “Flask” : a python package to

integrate front and back ends. Flask allows javascript

code to directly use python functions, as long as they

return values acceptable by Javascript. For this, the

back end send JSON files.

To perform analysis of the Wikipedia network, the

entire network needed to be downloaded. Doing so

was more difficult than originally planned as

Wikipedia has a limiting throttle for API accesses.

Data was collected over 12 days across multiple

computers. These were stored in dataframes which

were later combined to complete the network.

Unfortunately, the entire network could not be

analyzed due to system restraints. There are

approximately 14 million pages on Wikipedia, each

containing dozens of links. When constructed into a

network there are dozens of billions of edges between

these pages, and each edge requires at least a few

bytes of data and a few hundred to store nodes.

Therefore, to fit the network in memory, it requires

upwards of a TB of RAM. However, analysis was

performed on two subsections of data. These

subsections were 1,600,000 and 1,000,000 articles

large, and analysis was performed using a python

package named “NetworkX”. The aspects analyzed

were :

Flow hierarchy; the fraction of edges that do not form

cycles

Reciprocity; likelihood two nodes link to themselves

Centrality; the fraction of edges that connect to it

Assortativity; the likelihood any two connecting nodes

connect to other, same nodes.

1,600,000 articles between “Densil Theobald”-”Georg

Dedichen”

Flow Hierarchy : .833

Reciprocity : .0834

Most Central Node : ISBN (Identifier) .0212

Assortativity : -.107

1,000,000 articles between “!”-”ADS_13017

Flow Hierarchy : .605

Reciprocity : .340

Most Central Node : United States .0122

Assortativity : -.062

Further Work
The biggest improvement to be done is implement a

larger than memory model to analyze the entire

network rather than subsections. This will let us

implement a “Shortest Path” finder, the framework of

which can be seen in the “Pathfinder” image.

Packages like “Dask” allow easy larger than memory

management and will hopefully help wrangle the data

to be more manageable.

Front End :
Javascript running

Cytoscape and
Bootstrap

Back End :
Python pinging
Wikipedia API

Data
Request

JSON
Data

Constructs
and Displays

Pathfinder: A feature to be implemented. Users can enter in a source article and
a target article and the website displays the shortest path between the two.

Acknowledgements
We would like to thank our capstone professor and

project adviser Frank Witmer for his help with our

project. Also, ANSEP for providing a place to study

and work. And of course, to Wikipedia for being an

amazing educational tool with free information!

	Slide 1

