

UAA College of Engineering

UNIVERSITY of ALASKA ANCHORAGE

Project Summary

Determine driver, environmental, temporal, and roadway risk factors for Alaskan crashes.

Research Questions

- 1. What are the risk factors for injury in Alaskan crashes?
- 2. When is each type of crash likely to occur?
- 3. Are there factors beyond the original dataset that impact crash rates?

Question 2 - Likeliness of Each Crash Type Occurring

We trained two models to predict whether a <u>non-collision</u> or <u>collision with an animal/pedestrian/cyclist</u> would occur.

Note: in a non-collision crash, the vehicle does not collide with another object (for example, a rollover).

Key Takeaways:

- **1.** A collision with a pedestrian/animal/cyclist is most likely to happen when the driver is 30 or older and the roads are dry.
- 2. Conversely, a non-collision is most likely to occur when the driver is 29 or younger and the roads are not dry.

2

Road Data: Road Surface, Pavement, Functional Class, Intersection

Environmental Data: Lighting, Temperature, Weather,

Temporal Data: Date, Time, Month, Year

Driver Data: Age, Gender

Step 1: Calculated solar altitude (the angle of the sun in the sky) for each crash using latitude and longitude.

Step 2: Determined baseline solar altitude tables for each month in Anchorage, weighted to account for rush hour.

Step 3: Compared the number of crashes in Anchorage to the baseline.

Alaskan Car Crash Analysis

Department of Civil Engineering, Department of Computer Science and Engineering

Data Used

The data we used as in our analysis is listed below.

Meta Data: Crash Severity, Crash Type, Number of Vehicles Involved, Number of Injuries

Question 3 - Factors Beyond our Dataset That Impact Crash Rates

2. The highest crash rates occur at twilight (0° - 9°).

crash.

Model Accuracy

- XGBoost 70%
- Decision Tree 70%
- Support Vector Machine - 69%
- Linear Regression 62%

Risk Factors

- Type of Crash
- Road Conditions
- Time of Day

Key Takeaway:

6

We developed a website that allows users to utilize our machine learning models.

The models can be used to predict any data attribute in our dataset.

- 2. change.

We would like to thank our advisors, Dr. Vinod Vasudevan and Dr. Shawn Butler, for their help and insights on this project!

Question 1: Risk Factors for Injury in Crashes

We trained four machine learning models to predict whether injury would occur in a

Crashes that occur on icy/snowy roads are less likely to result in injury than crashes that occur on dry roads.

Future Research

Expand our dataset to include more data: vehicle information, driver actions, rush hour data, snowfall, etc.

Compare crashes in rural areas to urban areas to see if the risk factors