
Structural 3D File Conversion Tool

CSCE A470 Final Report

Group Members: James Stewman and Orry Snyder

Client: Dr. Scott Hamel

12/12/2024

Abstract

Our project is a tool that can convert files created in RISA-3D and ModelSmart 3D, each with its

own proprietary filetype (.r3d and .3dd, respectively), into a more widely supported filetype (.obj)

that can be used with various 3D modeling and printing applications.



1

1. Intro

Our project stemmed from an issue faced by the UAA students who participate in the

ASCE Student Steel Bridge Competition and elementary-age students who participate in the

UAA Summer Engineering Academies. This issue is that they create bridges in software that

use proprietary file types, which cannot be easily imported into other 3D modeling software such

as AutoDesk Fusion 360. With our tool, these two groups can quickly convert these proprietary

files into 3D mesh files that are easily importable into AutoDesk Fusion 360 or other 3D

modeling software.

2. Planning

Initially, we aimed to get something that worked decently with files generated by

RISA-3D written as fast as possible. Once we got a rough prototype working, we realized that

the math we used for the key part of our conversion tool would not work for our project. We then

worked on figuring out what mathematics/libraries would work best for our project and settled on

some of NumPy’s linear algebra functions. Once we got that working, we split our focus on

building a GUI and restructuring how we read and store information from the source files. Once

we had completed these two tasks, we sent off that version to Professor Hamel for user testing

and focused on the ModelSmart 3D file type. Since we had restructured how our program

worked, we could then read and parse these files in a manner that allowed us to use the same

mathematical and file generation functions for both file types. Once both file type conversions

were working and we were happy with our tool, we created the executable file and fully released

it on GitHub.



2

3. Requirements

Our tool's primary requirement is that the user use Windows 10/11 as their operating

system. There are three methods for running our program, each with its own set of

requirements.

● 3.1 Method one

○ The first method is to run one of the two exe files that are published in our GitHub

repository.

○ There are no additional requirements other than the aforementioned operating

system requirement.

● 3.2 Method two

○ The second method is to run the .bat file published in our GitHub repository.

○ This batch file will automatically install any missing dependencies and execute

the convert.py source file.

○ The only additional requirement for this method is that Python is installed.

● 3.3 Method three

○ The third method is to run the source files published in our GitHub repository.

○ This method requires the user to install Python, NumPy, and tkinter-tooltip.

4. Design

For this project, we decided to use Python as our programming language. We chose

Python because it is a language that we are both familiar with and that our client is also familiar

with. This will allow him to maintain the program better after we are done. For the output file

type, we chose the wavefront OBJ file format [6] because while there is no standard 3D file

format, it is a standardized file type that many applications can use.

4.1 Reading in the source files.



3

To read the data from the files, we went through the file line by line and parsed the data.

This allows for better scalability when reading larger files and is more time-efficient. RISA-3D

and Modelsmart 3D have very detailed file formats found in [1] and [2], respectively. We were

able to use the guides to read the data that we needed for the main functionality.

4.2 Conversion Algorithm

After the data is read from the file, we can begin the conversion process. The first step is

to go through each member and determine which planar views the member is in by finding the

minimum and maximum of the x, y, and z coordinates and comparing its coordinates to that.

Then, we determine if the member is circular or rectangular and compute the faces. For the

rectangular face, we used NumPy [3] to help us with the linear algebra. We first created a

direction vector from the two endpoints of a member and normalized it. Since each member can

be in any direction, we can’t just add the width and height to the centerpoint and go from there.

We must find two more vectors orthogonal to the directional vector that we can expand upon to

create the face. An example of this can be viewed in Figure 1.

Figure 1. Generated with Geogrbra 3D calculator [5]. This figure shows an example of our

generated direction vector with the two other orthogonal vectors so that we can make our faces.



4

There is also the possibility that a member is rotated in the source software. To account

for this, we used Rodrigues' Rotation Formula [4] to get a rotation matrix to ensure our

orthogonal vectors account for this rotation. The vertices and faces are then added to master

lists to be used later for the output. For cylindrical faces, we again start by finding the direction

vector so we know where to center the pie slices. Then, using input from the GUI, we determine

how fine the user wants their cylindrical shapes to be since you cannot represent a true cylinder

in the obj format, as seen in Figure 2 and Figure 3.

Figure 2. Cylinder with nine vertices. Figure 3. Cylinder with sixteen vertices

We use trigonometry to create the pie-shaped faces and vertices of the cylinders, then

add them to the same master lists at the end. Finally, we use the master lists of faces and

vertices to write the lists to the wavefront obj file.



5

4.3 Program Flow

The general flow of the program can be seen in Figure 4. The first step involves the user

selecting the source file(s), the output destination folder for the obj files, and any additional

options. Then, we check if the selected files are of the Modelsmart 3D or RISA-3D file type. We

use the process described in 4.1 to parse the data, then complete the main conversion as

described in 4.2, which is finally written to our output file.

Figure 4. A flowchart that shows the general flow of the program without all of our error

checking.



6

4.5 User Interface

The two interface windows can be seen in Figure 5 and Figure 6

Figure 5. Main window of user interface. Figure 6. Advanced user interface window

5. Development Process

Initially, most of our time was spent on the primary conversion process. We knew the

conversion would take the longest, so we devised a crude way to parse in the file to get working

on the more complex aspects of the conversion. Our first iteration of the conversion involved

attempting to use quaternion angles to rotate vectors in space easily.

However, neither of us had worked with quaternions before, and we were getting close to our

deadlines. We switched gears to see if it was possible to do it purely using linear algebra, and

we came up with our current algorithm for conversion. During this time, we also started to

sprinkle some aspects of the GUI.

Once an iteration worked, we began our testing phase with the client. Immediately, we

ran into issues from assumptions we made that were untrue. We did not believe you could

change the shape data of members, so we assumed it would always be in a specific format.

This was not the case, so we had to dig into the RISA-3D file and see where this data was

stored. At this point, we were also giving an executable file to the client that would crash



7

unexpectedly. We had not devised a proper error-handling solution besides print statements, so

we added a log file that would print the errors it encountered.

6. Analysis & Results

Our program works very well, as it does nearly everything we initially set out to do. Our

only shortcoming specific to the RISA-3D files is that some members, which are rotated about

all three axes, have some orientation issues that could be resolved by implementing normal

vectors. We also encountered an interesting problem with some ModelSmart 3D files where

some members were rotated 90° in the final OBJ file compared to how they appear natively in

ModelSmart 3D. There was also a problem specific to Tinkercad. For some reason, Tinkercad

puts large gouges and holes in imported models. However, this issue appears to be on

Tinkercad’s end, as files created in other 3D modeling software and then imported into

Tinkercad exhibited the same gouges and holes.

Figures 7 & 8 show a sample RISA-3D file before and after the file conversion.

Figure 7. Before conversion Figure 8. After conversion



8

Figures 9 & 10 show a sample ModelSmart 3D file before and after the file conversion.

Figure 9. Before conversion Figure 10. After conversion

7. Code Review

Severity
(H M L Q) Description of Defect Response

L, Q Instead of appending to the empty corners list, would it be more
efficient to define it upon declaration?

Changed the corners list
declaration to define each
corner upon declaration instead
of appending them.

H If the normalized vector is 0, a divide by 0 error occurs. Implemented a check that
verifies the normalized vector is
not 0.

L There is a lack of comments that explain the math, especially
function-level docstrings.

Added docstrings to all
functions.

M Exception handling for arithmetic (e.g., div 0) for debugging
purposes.

Added logging functionality for
when division by zero errors
arise. It was not necessary for
the program to crash when this
happened.

M-H Duplicate use of the variable name “i”. Changed one of the variable
names.

L Variable “arc_range” is not used. Removed the unused variable.

L-M magic numbers --> named constants These numbers were converted
to be based on the circle_size
variable.

L Typo: “verticies” instead of “vertices.” Fixed the typo.

L-M “dir” is a built-in Python function. Renamed the variable to dir_vec

Table 1. This table contains our fixes/responses to the code review.



9

8. Future works

Some potential future additions can be seen in the list below.

● Fix rotations of objects that vary in all angles.

● Allow the “2D” output to be usable in CAD vs. only being usable for 3D printing (.DXF file

type).

● Add normal vectors to faces in the obj file to allow for materials to be added to meshes.

● Potential fix to Tinkercad .obj issues.

● Make the cylindrical member have rectangular faces on the sides and triangles on the

caps.

9. Conclusion

Our conversion tool was designed with the goal of creating software that the Civil

Engineering department could use for some of the programs they host. We were able to meet

most of the original requirements on time, except for importing to Tinkercad. The structural

bridge team was able to use our software for their design and expressed that it was working

well. There were some extra functionalities that came up near the end, but we did not have the

time to add these.

We solidified our linear algebra and trigonometry techniques during this project. Working

on an actual project with changing features was a new learning experience to see through to the

end. We were also able to refine our communication and group work skills.

Overall, our software, Structural 3D File Conversion Tool, was a good learning

experience for us when working with a client and performing work for them.



10

References

[1] “Appendix D – File Format,” Risa.com, 2024.

https://risa.com/risahelp/risa3d/Content/Appendices/Appendix%20D%20(3D).htm

[2] Pre-Engineering Software Corporation, “ModelSmart3D Registered User Resources - TSQ,”

Pre-engineering.com, 2018. http://www.pre-engineering.com/modelsmart3d/tsq.html (accessed

Dec. 13, 2024).

[3] Numpy, “NumPy,” Numpy.org, 2024. https://numpy.org/

[4] S. Belongie, “Rodrigues’ Rotation Formula,” mathworld.wolfram.com.

https://mathworld.wolfram.com/RodriguesRotationFormula.html

[5] GeoGebra, “3D Calculator - GeoGebra,” www.geogebra.org.

https://www.geogebra.org/3d?lang=en

[6] Wikipedia Contributors, “Wavefront .obj file,”Wikipedia, Dec. 10, 2018.

https://en.wikipedia.org/wiki/Wavefront_.obj_file



11

Appendix A

Structural 3D File Conversion Tool
User Manual

Overview

This program converts trusses and/or bridges developed in either ModelSmart 3D (.3dd)

or RISA-3D (.r3d) into an OBJ file (.obj), which is much more widely supported in various

types of 3D modeling software, such as AutoDesk Fusion 360, or even 3D printing

slicers, like UltiMaker Cura. You can find the beta release here:

https://github.com/CompliedBytes/structural_to_obj/releases

Features

● Converts RISA-3D files (.r3d) to OBJ format.

● Converts Modelsmart files (.3dd) to OBJ format.

● Generates OBJ files compatible with Fusion 360.

● Supports batch conversion of multiple files and file types

● Can generate a single .obj or multiple .obj view projections for 3D printing.

Compatibility

Tested versions of RISA-3D
● 20.0501
● 22.01000

Tested versions of Modelsmart 3D
● Version 4

Supported Operating Systems
● Windows 10 & 11



12

Installation

Executable File

1. Run the executable.

Batch File

1. Install Python.

2. Clone the repository.

3. Run the batch script.

Source Files

1. Install Python.

2. Clone/download the repository.

3. Install the dependencies

pip install -r requirements.txt

4. Run the convert.py file located in the src folder.



13

Instructions

Primary Options

1. Source File(s)
Select the .r3d/.3dd source files you’d like to convert into .obj files.

Select multiple files if you’d like to convert more than one file at a time.

2. Destination Folder
Select the folder where you’d like to save the converted files.

The program defaults to the folder where the main program file is running.

3. 2D/3D Views
The default option is All.

2D
Only 3D members that fall along each 2D plane (XY, YZ, XZ plane) are
generated. This setting is useful for those who wish to 3D print their
bridges.

Note: In the Advanced settings menu, you can choose which 2D plane
views are generated. The default is all three planar views.

3D
Generate the entire 3D model in a single file.

All
Generate the 2D planar views and the whole 3D model in separate files.

4. Advanced
Click to open the advanced settings menu.

5. Convert
Click to convert the source files.

6. Exit
Click to exit the program.



14

Advanced Settings Menu

1. Advanced 2D Options
Specify which 2D planar views you’d like to generate.

The default setting is all three planes.

2. Cylinder Detail
Specify the number of side faces for cylinder generation. The more side
faces, the more round the cylinders will appear.

The default setting is 16 faces.

3. Coordinate Precision
Specify the number of decimal places to round nodal coordinates. The more
decimal places, the higher the level of precision in the generated .obj file.

The default setting is 0.001 of a unit.

4. Subfolder Creation
Create a folder for each source file and store all the generated .obj files in the
newly created folder.

The default setting is enabled.

5. Exit
Click this button to exit the advanced settings menu.


