
Fire Manifesting
App

Dawson Nash, Ben Brown
College of Engineering, Computer 
Science
Professor: Dr. Witmer
Application Client: Bryan Quimby
12/06/2024

How is it used?

Figure 3: Home Screen Figure 4: Add/Edit Gear, 
Crewmembers, Preferences

Figure 5: Add Trip 
Preferences

Figure 6: Create Manifest 
Screen

Figure 7: Build Your Own 
Manifest Screen

Figure 8: Exported Manifest 
to PDF

Why is it needed? How Is it Built?

Try it Yourself!

Android:
Step 1: Settings > 
Install Unkown Apps

IOS

Step 3
View & Download Fire 
Manifesting App Beta

Step 1
Get TestFlight on the 

App Store

Step 2
https://testflight.app
le.com/join/9QxrwrQX

Figure 1: Swan Lake Fire 
Sterling, AK, 2019

Figure 2: Handwritten Manifest

• Firefighters operate in 
high-stress, time-sensitive 
environments where 
miscalculation can lead to 
delays in needed resources 
as well as safety risks.

• The 'Fire Manifesting App' 
streamlines and automates 
the process for generating 
helicopter manifests.

• The app reduces potential 
human-error and optimizes 
operational efficiency.

How Does it Sort?

Future Work:
• The App is currently in an alpha stage with 
planned future work: 
o Additional Algorithm testing
o Additional UI testing with different devices
o Additional Crew input and sorting options
o Several User QoL features 

• The app was built using Flutter, an open-
source UI toolkit by Google.

• It allows for 'multi-platform' app 
development, letting us write code once and 
deploy it on both iOS and Android.

• Flutter uses Dart, an object-oriented 
language that compiles to various formats 
based on the platform.

• In Flutter, everything on the screen is a 
widget or a combination of widgets.

• We used Hive, a native NoSQL database for 
Flutter, to store user input data.

Manifests are currently 
Handwritten. Which has 
several Downsides:
• Time Consuming

• Error Prone

• Mentally Tiring for 
crewmembers

• Vulnerable to last-minute 
helicopter requirements 
changes

• Users Inputs:
• crew information, including crewmembers, 

gear, and their weights.
• Helicopter requirements, including the 

number of seats and max weight limit.
• Sorting preferences, dictating conditions 

for the sorting algorithm.
• Preferences include prioritizing crewmembers 

or gear for first, last, or balanced loads.
• The algorithm creates a trip object with 

several load objects, sorting items based on 
preferences.

• It then 'smartly' sorts any remaining items 
not bound by a preference.

• The sorting problem resembles the Knapsack 
problem, solved using a greedy approach, 
which is not always optimal.


	Slide 1

