

UAA College of Engineering UNIVERSITY of ALASKA ANCHORAGE

### Why is it needed?



Figure 1: Swan Lake Fire Sterling, AK, 2019



**Figure 2: Handwritten Manifest** 

SCAN ME

- Firefighters operate in high-stress, time-sensitive environments where miscalculation can lead to delays in needed resources as well as safety risks.
- The 'Fire Manifesting App' streamlines and automates the process for generating helicopter manifests.
- The app reduces potential human-error and optimizes operational efficiency.

Manifests are currently Handwritten. Which has several Downsides:

- Time Consuming
- Error Prone
- Mentally Tiring for crewmembers
- Vulnerable to last-minute helicopter requirements changes

![](_page_0_Picture_15.jpeg)

![](_page_0_Picture_16.jpeg)

![](_page_0_Picture_17.jpeg)

# Fire Manifesting App

## How is it used?

#### **Figure 3: Home Screen**

![](_page_0_Picture_23.jpeg)

**Figure 6: Create Manifest** Screen

![](_page_0_Picture_25.jpeg)

#### Figure 4: Add/Edit Gear, **Crewmembers, Preferences**

| 2:24             |                                                  | 📲 5G 🔲       |
|------------------|--------------------------------------------------|--------------|
| < Sw             | < Swan Lake Fire Save                            |              |
| Bauman           | Load 1                                           | Delete Load  |
| 15 lbs           | Available Weight: 1372 lbs<br>Available Seats: 0 |              |
| Trauma<br>Bag    | Quimby, 313 lbs                                  | ;            |
| 40 lbs           | McMaster, 268                                    | lbs 🧧        |
| Shovel/<br>Rhino | Hedgepeth, 25                                    | 5 lbs 🧧      |
| 25 lbs           | Winter, 242 lbs                                  |              |
| Shotgun          | Trauma/AED/SK                                    | ED, 45 lbs 🥫 |
| 33 lbs           | SAT Phone 5 lb                                   |              |
| QB               | SAT FILORE, S IS                                 |              |
| 45 lbs           | 1000                                             |              |
| MRE              | 1000                                             |              |
| 25 lbs           |                                                  |              |
| Fuller           | Load 2                                           | Delete Load  |
| 204 lbs          | Available Weight: 2500 lbs                       |              |
| Shults           | Available Seats:                                 | 4            |
| 243 lbs          |                                                  |              |
| Jayne            |                                                  |              |

Figure 7: Build Your Own **Manifest Screen** 

![](_page_0_Picture_29.jpeg)

#### Figure 5: Add Trip Preferences

![](_page_0_Figure_31.jpeg)

**Figure 8: Exported Manifest** to PDF

### Dawson Nash, Ben Brown College of Engineering, Computer Science Professor: Dr. Witmer Application Client: Bryan Quimby

### How Is it Built?

- The app was built using Flutter, an opensource UI toolkit by Google.
- It allows for 'multi-platform' app development, letting us write code once and deploy it on both iOS and Android.
- Flutter uses Dart, an object-oriented language that compiles to various formats based on the platform.
- In Flutter, everything on the screen is a widget or a combination of widgets.
- We used Hive, a native NoSQL database for Flutter, to store user input data.

### How Does it Sort?

- Users Inputs:
  - crew information, including crewmembers, gear, and their weights.
  - Helicopter requirements, including the number of seats and max weight limit.
  - Sorting preferences, dictating conditions for the sorting algorithm.
- Preferences include prioritizing crewmembers or gear for first, last, or balanced loads.
- The algorithm creates a trip object with several load objects, sorting items based on preferences.
- It then 'smartly' sorts any remaining items not bound by a preference.
- The sorting problem resembles the Knapsack problem, solved using a greedy approach, which is not always optimal.

#### Future Work:

- The App is currently in an alpha stage with planned future work:
  - Additional Algorithm testing
- Additional UI testing with different devices
- Additional Crew input and sorting options
- o Several User QoL features