

 1

An App to Automate the Creation of Load Manifests for
AK Fire Crews

Dawson Nash, Ben Brown

CSCE – 470

December 12th, 2024

 2

Table of Contents:

Abstract..3

1. Introduction..3

2. Project Overview...3

3. Project Client and User Base..4

4. Requirements...4

4.1 Functional Requirements...5

4.2 User Requirements..5

5. System Design..5

5.1 Architecture..6

5.2 Data Design..6

5.3 User Interface Design...9

5.4 Algorithm...10

6. Software Development Process...11

7. Results...13

7.1 Results, Analysis, and Strengths...13

7.2 Improvement and Future Work...13

8. Conclusion...14

9. References...15

10. Actions taken from code review...16

11. User Manual...17

12. Source Code...30

12.1 Data Files..30

12.2 User Interface Files..30

13. Bug Tracking...31

 3

An App to Automate the Creation of Load Manifests for AK Fire Crews

Abstract

In Alaska, fire crews create detailed manifests listing all crewmembers and gear scheduled
to be flown to remote locations to combat wildfires across the state. To assist with this
high-stress and critical task, we developed an app to automate the manifest creation
process. The app enables users to input key information, including crew details, helicopter
weight and seat limits, and preferences for how the loads should be organized. Based on
this information, the app generates a manifest that users can review and export for
sharing.

1. Introduction

In the world of wildland firefighting, having sufficient time to prepare for operations is a rare
luxury. From responding quickly to emerging incidents to deploying via helicopter to
isolated locations, it is a fast-paced job with many stress-inducing challenges. In Alaska,
fire crews frequently travel to remote fires far from any road system1, relying on aircraft to
transport personnel and cargo safely and efficiently. A critical aspect of aircraft travel
involves creating detailed manifests. These documents list the weight of each crew
member and piece of equipment to ensure compliance with the helicopter's specific
weight limits.

Currently, this manifesting process is done entirely with paper and pencil. It can take over
an hour to complete due to the complexities of transporting a crew to and from a fire.
Standard operating procedures must be followed, and manifests must be tactically
organized to ensure both crew safety and effective firefighting. The process becomes even
more complicated when helicopters or operational circumstances change unexpectedly,
requiring crews to restart the manifesting process from scratch. These disruptions can
cause delays and add unnecessary stress to time-sensitive operations.

2. Project Overview

To address this challenge, we have developed a digital manifesting app that automates
and streamlines the weight calculation and manifesting process for fire crews. The app
allows users to input the weights of crewmembers, tools, and equipment, along with
specific preferences or requirements, such as ensuring water is included on each load, the
crew boss is on the first load, or leadership is evenly distributed. By automating this
process, the app saves valuable time, reduces human error in weight calculations, and
provides the flexibility to quickly adapt to last-minute changes in helicopter assignments or

 4

operational needs. Most importantly, it reduces stress for firefighters operating in high-
intensity environments. Rapid and accurate mobilization is critical, as crews play a pivotal
role in suppressing wildfires before they grow larger, more dynamic, and costly2.

The most important challenge of the manifesting app was finding the right balance
between automating the task of manifesting and allowing fire crews to maintain full control
over the algorithm's functionality. This balance makes the use of load preferences
essential to the app's success. For the app to be valuable to Alaska fire crews, it must
create manifests based on their specific, self-determined needs. To address this further,
we incorporated a manual manifesting tool. This feature allows fire crews to build a
manifest themselves within the app using input crew and gear data, while the app provides
guardrails to ensure a valid manifest. This dual functionality offers crews the flexibility to
create manifests based on their need for fine-tuned control or to prioritize the algorithm’s
automation for efficiency.

3. Project Client and User Base

The primary client who was consulted throughout this project and provided consistent
feedback on the app’s core functionality and requirements was Bryan Quimby. He has
extensive experience in wildland fire, ranging from being a simple crew member to being
the commander of large, complex fire incidents, having to interface with many state and
federal resources. Quimby was the ideal point of contact for a project of this nature, as
aviation operations in fire, to include manifesting personnel and cargo loads, has been a
large part of his career in wildfire. The intended user base for the Fire Manifest App
includes users similar to Quimby, a niche set of individuals, fire personnel, who will be
conducting air operations on a daily basis. For this reason, while the intent is to make the
app intuitive to any user, there is still a degree of workplace-specific knowledge that will
allow the greatest use of the app’s functionality.

4. Requirements

The project requirements are loosely defined but center on creating an app that supports
Alaska fire crews in the manifest creation process. The goal is to automate as much of the
process as possible while ensuring that the fire crews retain a strong sense of control over
the sorting algorithms.

 5

4.1 Functional Requirements

1. Allow users to input crewmember and gear information tailored to their specific
crew requirements.

2. Enable users to define preferences for how manifests should be structured,
including the allocation of crewmembers, teams, and gear across different loads.

3. Include an algorithm to process user-defined preferences and generate a load
manifest schedule (trip) based on those preferences and crew specifications.

4. Provide users with the ability to manually create trips, offering them full control over
the manifesting process.

5. Support the exporting of manifests for sharing with team members and helicopter
staff, ensuring the validity of the manifests and adherence to the planned schedule.

6. The app should be built for mobile devices first and foremost, as manifest creation
is often done in the field or on the move

7. The app should be multi-platform, on both IOS and Android, to meet the
requirements of all potential users based on their needs.

 4.2 User Requirements

1. The software must include training instructions to ensure fire crews can effectively
learn how to use the app for creating manifests.

2. Automated manifests generated by the app must be reviewed by a crewmember.
Given the significant impact of potential mistakes in the manifest, it is essential that
users monitor the outputs, even if the creation process is largely automated.

3. While designed for a niche user base, the app should still be intuitive and easy to
navigate.

5. System Design

The design of the app followed its intended core functionalities: the input of crew member
and gear data, the creation of manifests, and the user’s ability to customize how those
manifests are created.

5.1 Architecture

The framework for the app is built on Flutter, a software development kit created by Google
and written in Dart that allows for deployment on many different platforms that are critical
for the app’s user base like Android and iOS. As a Flutter Project, the app was developed
through Android Studio, which allowed easy testing on Android devices and could be
ported to Xcode for iOS testing. All core functionality of the app to include data

 6

management, user-interface retrieval, or algorithms are run exclusively within in-device
storage, as being able to use the app in its full extent is an absolute necessity for crews
without internet service in remote locations.

The specific architecture of the app, which arose mostly organically from the design
process of meeting core functionalities, can be described as layered, modular, and event
driven. The app is tailored heavily to mobile platforms and has a strong focus on data-
driven decision-making and user-centric features, i.e., the app is designed for a specific
task, sorting, and the user is in command of everything else in-between. This architecture
can be split between three distinct layers. The first of these, the presentation layer,
manages the user-interface and interactions by using stateful Flutter widgets. It is
responsible for providing real-time viewing of both input and created data. The second of
these layers is the logic layer, which handles all core app logic to include the load-sorting
algorithm, weight calculations, user preferences, and the interface between real-time data
updates on the user’s screen to ensure clean data is being passed to app functions. The
third and last layer is the data layer, which manages data persistence, retrieval, and
updates. This consisted of both temporary data storage on each app launch, as well as
long-term storage through Hive, Flutter’s native NoSQL database. In addition to being a
layered architecture, the app was also modular in design. Each phase of the development
process focused on a specific aspect of the app such as the Crew/CrewMember/Gear,
Trip/Load, TripPreference, and Algorithm modules. Each of these are divided into well-
defined sections that allow for better maintainability and scalability if need be. The
architecture is also event driven. It relies on events like user interactions for adding or
removing data to trigger user interface updates or logic execution. If data is changed, the
Hive database also needs to automatically update and provide that information back to the
user.

5.2 Data Design

The data management structure for the app follows multiple class-based, hierarchical
structures. The three types of data managed fall into the following categories: Crew, Trip,
and Trip Preference. In the Crew structure, as can be viewed in Figure 1, the user’s crew is
organized into both crew members and gear. When crew members are created, the user
must define their name, flightweight (body, backpack, and personal protection equipment
weight), and whether they have any personal tools (tools that never separate from the crew
member). When gear is created, the user must define its name, weight, and whether there
is more than one.

 7

Crew

CrewMember[] crewMembers

Gear[] gear

int totalCrewWeight

CrewMember

String name

int flightWeight

int position

Gear[] personalTools

Gear

String name

int weight

int quantity
 Figure 1

In the Trip class structure, as can be seen in Figure 2, the data for each manifest is stored.
A Load object can be thought of as one single manifest, while the Trip can be thought of as
the set of manifests that are required to get a whole crew from one place to the next. These
objects are created in the manifesting process, which happens following user-triggered
responses in the Quick Manifest and Build Your Own Manifest pages (Figure 4). The user
must define a Trip Name, the allowable weight of the helicopter, and the number of
available seats. Then, depending on user preference, Load objects are created via
algorithm or by the user themselves.

Trip

String tripName

int allowable

int availableSeats

Loads[] loads

Load

int loadNumber

int weight

CrewMember[] loadPersonnel

Gear[] loadGear

 Figure 2

 8

The last class structure, as seen in Figure 3, is the Trip Preferences. This data structure is
created under the Trip Preferences branch under Edit Crew (Figure 4), where the user first
creates a Trip Preference object. This object contains both PositionalPreference and
GearPreference objects that reflect how the user wants their crew members and gear
sorted during the manifesting process. Each preference object contains a load preference
which can be either first, last, or balanced. This means that each crew member or gear
item can be defined to go on the first or last load, and if grouped can be distributed evenly
amongst all loads in a balanced fashion. This structure is by far the most complex and
difficult to understand as it is the backbone input for the load calculating algorithm and
must provide the user with any considerations they might think of while creating a
manifest. To name a complexity, the CrewMembers array in PositionalPreferences had to
be made dynamic as the user had to have the ability to define whether they wanted a single
individual to follow a load preference (first, last, or balanced), or an array of individuals to
be constrained by the same preference. This is especially important in cases where you
have “Saw Teams”, two crew members responsible for chainsaw operation, who can never
be separated and must be on the same load. With this Dynamic List data structure, the
algorithm can recognize whether an object passing through is a team of individuals or not.
There were many considerations like this which went into the design of the class structure.
An example of a Trip Preference can be seen in the Preference Loadout Screen, found in
Section 11, User Manual.

SavedPreferences TripPreference[] tripPreferences

TripPreference

String tripPreferenceName

PositionalPreference[] positionalPreferences

GearPreference[] gearPreferences

PositionalPreference

int priority

int loadPreference

DynamicList[] crewMembers

Gear

int priority

int loadPreference

Gear[] gear
 Figure 3

 9

5.3 User Interface Design

The user-interface design, as can be seen in Figure 4, follows a top-down approach where
all screens stem from the main page, Main Menu. All data creation and editing within the
Crew/CrewMember/Gear and TripPreferences modules are done through the second layer
page, Edit Crew. Here, the user creates their crew and defines how they want it sorted
when traveling to and from a fire. This is where they can create and edit the CrewMember
and Gear objects that are added to the global Crew Object. This is also where the user can
create a TripPreference that is used during the manifesting process. Another second layer
screen, Manifest Page, is the route the user takes for creating crew manifests. They have
the option of performing a Quick Manifest, which uses the user-customized load
calculating algorithm, or a Build Your Own Manifest where they can build loads one at a
time without aid. Both of these manifesting options operate within the Trip/Load module
where Trip objects are created and manipulated, however, this route utilizes all modules
when passed to the load calculating algorithm that performs operations on all types of
data. The last branch of the user-interface design is the View Trips page. Here, the user can
view Trips created from the Manifest Page route, and export both individual loads and
entire trips to official state and federally used manifest form PDFs.

 Figure 4

 10

5.4 Algorithm

The backbone of the Fire Manifest App is the load calculating algorithm. This 408-lined
function takes in TripPreference object and generates the necessary number of sorted
loads to get a user’s crew to their destination, may it be to the fire line or back home. From
a high-level overview, the algorithm simply takes in the user’s preferences, places those
items and people on their respective loads, and then smartly sorts the remaining crew. For
a more thorough breakdown, the algorithm works in the following fashion.

1. Inputs, Calculations, and Data Initialization

The algorithm begins by taking in both a Trip and a Trip Preference object (Figures 2 & 3). It
then calculates and initializes the total number of loads that are required based on the
total crew weight, the allowable weight of the helicopter, and its available seats. The more
seats that are available, the closer the algorithm can get to the allowable for each load
weight. The algorithm then creates copies of the crew data to avoid direct manipulation of
the source data, and because once Trip Objects are created, they need to be isolated from
any future changes users make to crew members and gear. Once a manifest is made, its
data is meant to persist.

2. Trip Preferences

The algorithm then considers the user’s preferences. It loops through each Positional and
Gear Preference and places the crew member and gear objects into their respective loads.
There are several considerations during this process. While placing Positional Preferences,
it identifies whether there is an individual crew member or a team of crew members. If it’s
a team, it ensures that team stays together. For example, if the Positional Preference is
“Saw Team 1, Saw Team 2, Saw Team 3, Saw Team 4; Load Preference: Balanced”, it
cyclically loops through each load placing entire saw teams on each load. For Gear
Preferences, another crucial consideration is the quantity of items in a preference. If a
quantity for an item is greater than one, the algorithm will create additional gear objects of
the same item until the preference is fulfilled. This way a gear item can be stored as a
single object and have a single quantity attribute that defines how many exist, as opposed
to consuming memory with multiple objects of the same type. For example, if a Gear
Preference is “5-Gal Water (x2); Load Preference: Balanced” the algorithm will start with a
single 5-Gal Water gear object, create additional objects until it reaches the designated
quantity (x2) for that load, and then cyclically repeat for each successive load until there is
no more 5-Gal Water gear objects left in the crew inventory.

 11

3. Smart Loading and Shuffling

Once the algorithm has considered the user’ s preferences, it then sorts the remaining
crew members and gear. It does this by first shuffling the crew members by position to
ensure distributed crew member skillsets among loads and avoid grouping identical
positions on the same load. A user wouldn’t want all of their medics, for example, to be on
the same load; they would want them distributed in case the crew gets separated. There is
also an element of randomness introduced into this process. Once positions have been
shuffled, the algorithm then cyclically places the remaining crew members and gear onto
loads. The cyclic approach guarantees that load weights will be as close as possible given
the user’s predefined constraints. It also guarantees that, even if the user didn’t define it in
their Trip Preference, gear items will be evenly distributed, which balances out critical
items with larger quantities like water and food.

6. Software Development Process

The development process for the Fire Manifest App was loosely defined at the beginning of
the academic semester and followed an Agile approach that contained five total sprints.
The end goal for the app revolved around three concrete objectives: be able to input crew
and gear data, be able to input preferences for how the user wants to sort loads, sort crew
and gear into loads based on preferences and be able share those loads. These goals,
while concrete, seemed very ambiguous in the precise method for how they would be
accomplished at the beginning of the semester. This was especially true with the user-
defined preferences, as there were so many considerations to include in this potential
algorithm. By breaking down the project into several sprints, it was able to come to fruition.
The goals of each sprint are as follows:

Sprint 1

During this sprint, completed on October 1st, the focus was on setting up the project and
ensuring all required packages, dependencies, and software were downloaded to begin
creating the UI and data design. This is the time when the initial app pages were designed
and implemented on Flutter, which required research into the Flutter development kit and
the Dart language. These initial app pages included the crew member and gear input
pages, albeit the backend data structures were not yet implemented.

Sprint 2

During this sprint, completed on October 14th, the focus was on building the initial Crew
data structure to support the front-end UI. Given that the initial pages were built already in

 12

Flutter from sprint 1, there was good boiler plate code to start generating the UI framework
for a lot more pages. Once the UI coding became easier to understand, which took up a
large part of the initial sprint, time could be spent on developing the logic to connect data
between pages and provide functions to front-end UI widgets. This is also the sprint that
the Quick Manifest page was built.

Sprint 3

During this sprint, completed on October 28th, a basic template for data would be created
and stored by the user was already implemented, so the focus became on allowing them
to edit their created data. Additionally, this is the sprint that pseudo code for the load
calculating algorithm and potential design for the Trip Preference data structure was
developed. Both of these tasks were very abstract during the initial design phase of the
project so most of the time spent during this spring was less on coding and more back on
the white board and notebook trying to make this concept make sense.

Sprint 4

During this sprint, completed on November 11th, a basic sorting algorithm was created and
generated the first manifest, and shortly after the Trip Preferences feature was actualized.
In addition, the Build Your Own Manifest page was created which allowed the user to
create their own manifests from scratch. A lot of the time spent during this sprint was on
turning the pseudo code of the Trip Preferences and load calculating algorithm into actual
code.

Sprint 5

In the final sprint, completed on November 25th, all focus was spent on applying final
touches to the app to prepare it for the final presentation. This included refining the
algorithm and bug testing to make sure the core functionality was where it was intended to
be.

7. Results

7.1 Results, Analysis, and Strengths

Given the timeframe for the project, a little over 3 months, and the resultant functioning
app, the final product turned out better than could have been expected. The app still needs
a significant amount of bug fixes, user-interface scalability restructuring, and algorithm
testing, but all the initial goals for this project were met. The user is able to input their crew
data, define how they want them sorted, and generate instantaneous manifests that they

 13

can download and share with their crew. The app has very clear definitive strengths that
are the result of meticulous data management design. One of these is how well the
algorithm sorts based on user preferences. Yes, there are still clear bugs and the
occasional crash with certain edge-case inputs, but when it does sort, it sorts just how it
was intended: like the thought process of a wildland firefighter. The Trip Preferences are
simple, intuitive and highly effective. Their incorporation into the algorithm, as well as the
modular design of the algorithm, also makes understanding how sorted items are placed
into loads easy to understand from a developer point of view. This allows easy debugging if
something goes wrong in the manifesting process.

7.2 Improvement and Future Work

There are several items that do not work as intended quite yet and require further work.
Given the complexity of the algorithm and the required data structures, managing data
within the app came with a lot of backend work to ensure the user could not break the app
or, more importantly, the app did not generate wrong calculations for a task as high stake
as aviation operations in wildland fire. The nature of the user base’s line of work is a
testament to how much more rigorous testing still needs to be done for releasing it for
official use. On the minor improvements to the app, less focused on functionality, there
are a lot of quality-of-life features that need to be implemented. This includes items like
dynamic user-interface scaling for mobile devices of all screen sizes, adding a home
button, re-imagining the allowable slider to allow for keyboard input, etc. On the larger
improvements of app function, some core features need a lot of work. The foremost is the
ability to edit created trips. This would be a highly beneficial feature to allow more freedom
in manifest creation. Currently, once a manifest is made, it is set in stone unless it’s
deleted and reattempted. Another big improvement and challenge that was not overcome
was the ability to store Trip Preferences permanently within the Hive database. Hive does
not allow for arrays of a dynamic type, which is used in PositionalPreferences, and
changing this would require a lot of app restructuring.

8. Conclusion

The Fire Manifest App project this semester represents a potentially large improvement in
streamlining the manifesting process for Alaska fire crews. By automating weight
calculations and load assignments while maintaining flexibility for manual manipulation of
loads, the app addresses critical challenges in fire aviation operations. It reduces the time,
stress, and human error associated with creating load manifests, enabling crews to focus
on their primary mission – fighting wildfires effectively and safely.

 14

Throughout development, key lessons were learned, particularly around balancing
automation with user control. The inclusion of both the algorithm-driven and manual
manifesting options ensures the app remains intuitive and adaptable to unique operational
needs. Additionally, the app’s modular architecture and well-structured data hierarchy lay
a strong foundation for any future enhancements, scalability, and debugging.

However, challenges still remain, such as refining trip editing capabilities, dynamic UI, and
addressing edge-case bugs that break the limits of the load calculating algorithm. Rigorous
testing and feedback from wildland firefighters in the field are going to be critical for
guaranteeing the app’s reliability in high stake scenarios.

Ultimately, the Fire Manifest App came into fruition after several months of planning and
design and is a practical tool that has the ability to support fire crews in Alaska. With
continued work, the app has the potential to become a very essential resource for
assisting air operations in wildland fire and ensuring the crews can focus on their primary
mission.

9. References
1. Alaska Department of Natural Resources Division of Forestry & Fire Protection, Fire

Assignments, 15 September 2017,
https://forestry.alaska.gov/fire/assignments#map

2. Alaska Department of Natural Resources Division of Forestry & Fire Protection,
Aviation Program, 15 September 2017, https://forestry.alaska.gov/fire/index

https://forestry.alaska.gov/fire/assignments#map
https://forestry.alaska.gov/fire/index

 15

10. Actions Taken from Code Review

Severity Defect Resolution

L increase from 2 to 4 spaces for
indentation

Not implemented, all code was indented per
Flutter development kit and Android Studio

Q
Is ceiling what you want? Yes, as you need as many or more loads

than the sum of the weight needed to be
manifested

L
error check if currentLoadWeight >
maxLoadweight

Already implemented in load calculating
algorithm. This check determines when to
move to the next load.

L

reduce similar code in case statements Not implemented because we did not have
the time. A lot of the case statements were
similar, but each unique enough to cause a
good headache to try and restructure.

L
magic numbers for cases -- replace with
named constants

Same as previous defect. This would likely
be a easy fix, it just was not placed as high
priority.

Q crew is global variable? Yes, one crew object that acts as the user’s
crew.

Q
consider a class for load preference? Did not implement, it works better as an

attribute of Positional and Gear Preferences
for our purposes.

M-H

nested for loops; complexity concern We decided that due to the small scale of
the sorted data, complexity was not a big
enough concern to justify rewriting the
algorithm to be faster.
Especially due to the limited deadline and
that the algorithm was sorting ‘instantly’
from the user perspective.

M deep nesting Same answer as above

L rewrite as regular if statement Did not implement. Did not see it as a
priority, and code made sense to us.

L

shorten conditionals using a function or
boolean

Similar to the reasoning for restructuring
code for the case statements, this is a good
idea and would help with readability, but it
was placed on the backburner to get other
features complete.

L-M

use of break statements within loops
(switch breaks are OK)

The break statements were never taken out,
but it is very likely that they are not
necessary. The load calculator works with
them, and a simple test could be done to
determine whether they’re needed.

 16

11. User Manual

Home Screen:

The Fire Manifesting App has
three main functions:

1. Input and Edit Crew, Gear,
and Preferences

2. Create Manifests Based
on aircraft Requirements

3. View and Export Trips

These functions are
accessible through the three
options on the home screen.

To navigate between
sections, use the back arrow
to return to the home screen
before selecting a different

section of the app.

 17

Edit Crew Screen:

The edit crew screen includes
five option menus:

1. Add Crewmember
2. Edit Crewmember

3. Add Gear

4. Edit Gear

5. Trip Preference Settings

The Add and Edit
Crewmember and Gear

screens allow you to input
and save new crewmembers

or gear or edit existing entries.

The Trip Preference Settings
option lets you customize and

adjust trip preferences to
tailor the manifest sorting
algorithm to your needs.

 18

Add Crewmember and Gear Screens:
Enter crewmember and gear information, then select Save to store

the new crewmember or gear within the app.

 19

Edit Crewmember and Gear Screens:

Select the Edit icon for the crewmember or gear item you wish to
modify. Update the necessary attributes, then select Save to apply

the changes.

 20

Create Trip Preference Loadout Screen:

Preferences allow you to
customize how the app

creates manifests based on
your specific needs and

requirements.

To do this, you create a
Preference Loadout, which

includes all your desired
preferences. You can then
select this loadout when

prompted during the manifest
creation process.

The first step in creating a
loadout is to assign it a name.
Once named, click Add Load
Preference to define specific

preferences.

 21

Add Load Preference Screen:

On the Add Load Preference
screen, you can choose

between Positional
Preferences and Gear

Preferences.

For each type of preference,
you can select any

combination of
crewmembers or gear. To

determine how the selected
items are allocated, you can

choose from the following
distribution options:

First: All selected items are
placed on the first load.

Last: All selected items are
placed on the last load.

Balanced: All selected items
are evenly distributed across

all loads.

 22

Preference Loadout Screen:

After adding the desired
positional and gear

preferences, you can exit the
Load Preference screen.

If you need to make additions
or edits in the future, simply
return to the Loadout screen
to update your preferences.

 23

Create Manifest Screen:

The Create Manifest screen
offers two options:

1. Quick Manifest: This
option uses the app's sorting

algorithm and the user's
preferences to automate the
manifest creation process.

2. Build Your Own: This
option provides a drag-and-
drop interface, allowing the

user to manually create a
manifest by placing items into

different loads. The app
ensures that all created loads
comply with the helicopter's

constraints.

24

Quick Manifest Screen:

To use the Quick Manifest
Option you need to provide the
following four required details:

1. Trip Name: which needs to be
unique.

2. Trip preference loadout:
which was defined earlier in the

preference settings window.

3. Number of available seats:
Specify the total number of

seats available.

4. Allowable weight: Enter the
weight limit for the aircraft

Once these details are entered
click ’Calculate’ to prompt the

algorithm to generate a trip
based on the selected trip

preference loadout.
The trip can be viewed in the

saved trips screen.

 25

Build Your Own Manifest (settings) Screen:

To use the Build Your Own
Manifest screen, start by

entering the following details:

1. Trip Name: Must be
unique.

2. Number of Available
Seats: Specify the total

number of seats available.

3. Allowable Weight: Enter
the helicopter's weight limit.

After entering these details,
select Build to proceed to the

drag-and-drop screen.

 26

Build Your Own Manifest (drag-drop) Screen:

Drag items from your saved
gear and crewmember list on

the left side into the load
sections on the right side of the

screen.

Add new loads using the Add
Load button or remove existing

ones with the Delete Load
button.

The Available Weight and
Available Seats indicators

display the remaining capacity
for each load.

If a load exceeds the weight
limit, these indicators will turn

bright red to signal that the load
is invalid.

Once the manifest is complete,
click the Save button to store
this trip in your Saved Trips.

 27

Saved Trips Screen:

 View Load Contents: To see
the contents of a specific

load, select the load you want
to view. A detailed screen will
appear, displaying each crew

member and gear item
assigned to that load.

Export to PDF: To export the
trip as a PDF document, click
the Export button located in

the top-right corner of the
screen.

 28

Export Trip Screen:

After clicking the Export button, you will be prompted to select
either a Fixed-Wing or a Helicopter manifest.

Choose your preferred option, then click Export to generate the
manifest as a PDF, which can be shared outside of the app.

 29

12. Source Code

The source files for the Fire Manifest App can be found on GitHub at the following link:
https://github.com/dawsonnash/fire_manifest_app. All User Interface and Data
management files can be found under the lib folder. The rest, besides the asset folder and
pubspec.yaml file, were altered either very little or not at all, as they come generated with a
Flutter Project and are responsible for tasks like converting Dart to the native languages of
iOS and Android.

12.1 Data Files

The lib -> Data folder contains all files relevant for managing the app data. Each data file is
accompanied by its .g file, which is auto-generated as a result of classifying the data class
files as Hive objects. Inside the Crew class structure are all the functions relevant for
manipulating crew member and gear data as well as the calculations necessary for
updating attributes of these objects. Inside the Trip class file contains all the functions
relevant to manipulating Trip and Load objects. Inside the SavedPreferences file contains
the entire Trip Preference class structure for creating Positional and Gear Preferences.
Lastly, in this folder is the load calculator file.

12.2 User Interface Files

Placed directly in the lib folder is the entirety of the app’s user interface files. These files
align greatly with the UI layout in Figure 4. The naming convention of all files follows
directly what their designed purpose is.

https://github.com/dawsonnash/fire_manifest_app.

 30

13. Bug Tracking

UI Text Overflow Issue

Description:

In user input text fields across various app pages—including the Add and Edit
Crewmember and Gear screens, Preference Settings, and Trip Manifesting screens—text
entered by the user can overflow the available text window if it is too long. Flutter responds
to this issue by displaying grey and yellow error bars that obstruct the view of the
overflowed section.

Severity:

Medium

App Crashing When Manifesting Without Preference Loadout

Description:

If the user attempts to use the algorithm to create a manifest in the Quick Manifest screen
without selecting a preference loadout, the app crashes. This issue manifests as the app
freezing and becoming unresponsive, requiring a restart to regain functionality.

Severity:

High

	4.1 Functional Requirements
	12.1 Data Files
	UI Text Overflow Issue
	App Crashing When Manifesting Without Preference Loadout

