

UNIVERSITY of ALASKA ANCHORAGE

Moro Bamber, Youji Seto, Nemed Aleman Department of Civil Engineering, Department of Computer Science and Engineering

Project Summary

Our mission was to find valuable insights into automobile crash data in Alaska.

Guiding Research Questions:

- What can we find in this data that tells us more about why a crash happened?
- How do crashes differentiate based on if they are in an urban or rural setting?

We employed advanced Machine Learning Techniques to enhance our research.

We also developed a web application to aid in further research with this data.

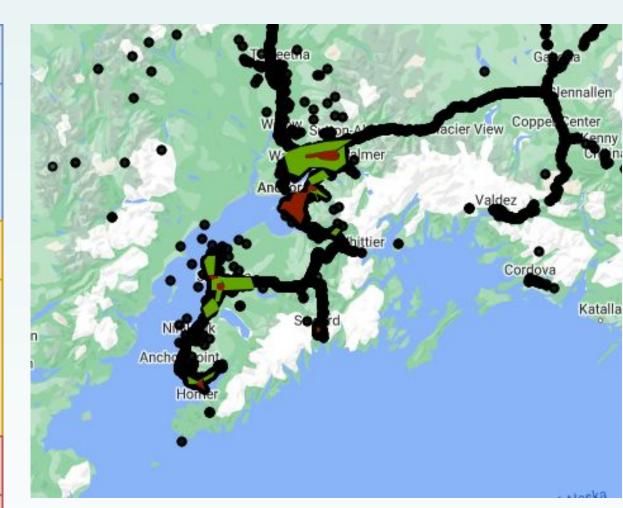
Data Pre-Processing

The crash data consisted of tables of 50,000 - 100,000+ rows and 30+ columns. The data was broken down into 3 levels of increasing detail about each crash.

We used a combination of SQL and Python to build the datasets we used in our ML models.

Using Google Earth Engine and python, we classified each crash into an urban, suburban and rural category.

Crash Level


High Level Characteristics about Crash and Environment

Driver-Vehicle Level

Includes a Row for all vehicles/units invloved & Characteristics pertaining to the Driver of the Unit

Person Level

Includes a row for every person involved. Says who was injured, where they sat

Black Dot: Crash Green Area: Suburban Area Red Area: Urban Area

Areas and Crashes in Google Earth Engine

Why use the Multilevel Random Forest Model?

- insights.

Key Question:

Multilevel Random Forest Model **Evaluation Metrics**

Moderate Injury

- Rural: 63.3% accuracy
- Urban: 62.8% accuracy

No Injury

- Rural: 67.7% accuracy
- Urban: 65.7% accuracy

Тор	o 5 Features (Co
	alcohol	
	body_type	
Features	crash_type	
Ĕ	month	
	causal_unit_first_ev ent	
	0.0	000

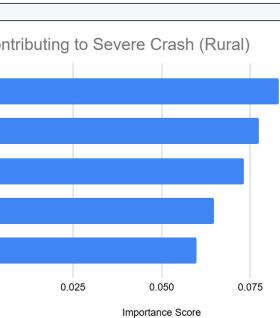
Alaska Automobile Crash Analysis

Machine Learning

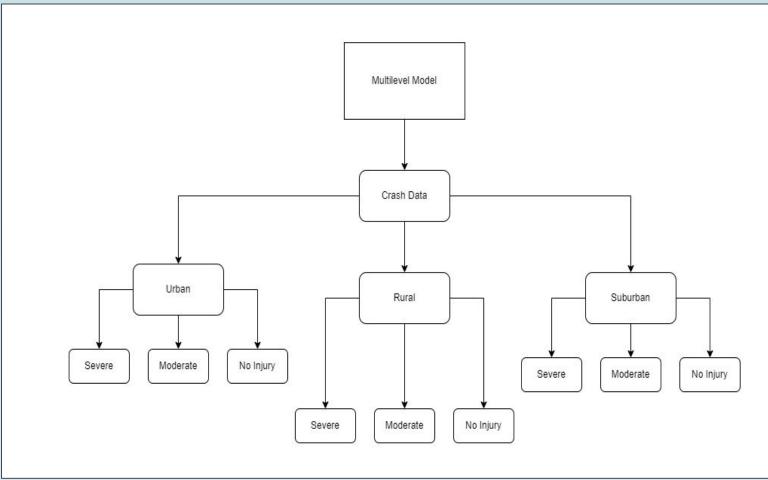
Enables Advanced Analysis: • Analyzes data in a nested structure for area-specific

• "Which contributing factor correlates most with a specific crash type based on area (urban, rural, suburban)?"

• Suburban: 62.5% accuracy


• Suburban: 62.1% accuracy

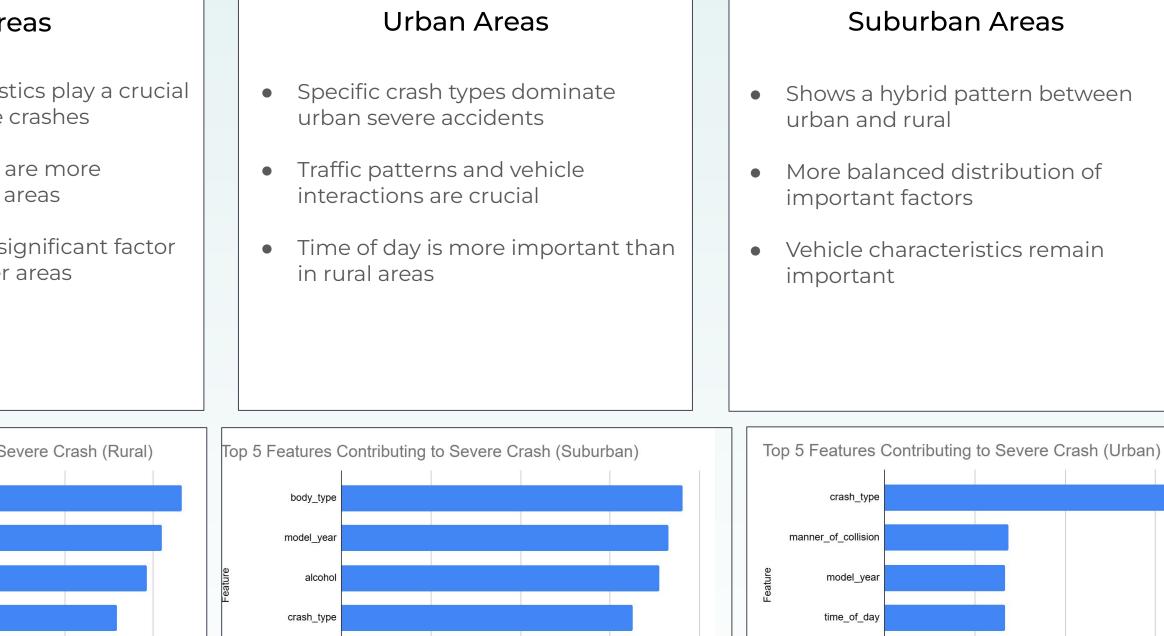
Rural Areas


 Vehicle characteristics play a crucial role in rural severe crashes

• Seasonal patterns are more important in rural areas

• Alcohol is a more significant factor compared to other areas

causal_unit_first_ev


Multilevel Model Structure

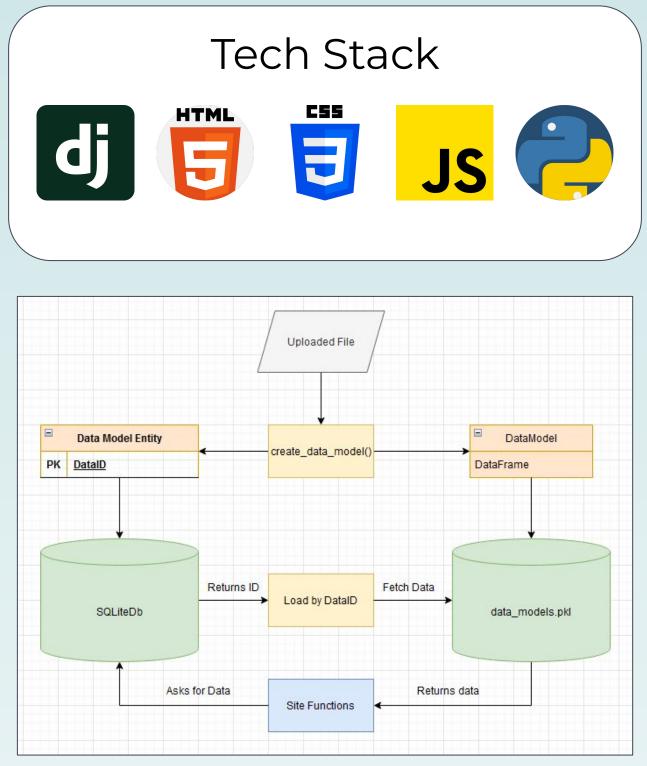
Severe Crash Type Evaluation Metrics							
	Rural	Urban	Suburban				
Accuracy	0.77	0.73	0.75				
Precision	0.78	0.75	0.76				
Recall	0.75	0.71	0.73				
F1	0.77	0.73	0.75				

Severe Performance Metrics

causal_unity_first_e

0 000

0.060


Importance Score

0.080

Alaska Crash Data Analysis Tool

The application allows users to:

- 1. Upload and access large datasets
- 2. Filter Data to specified preferences
- Run Machine Learning models on specified data 3.
- 4. Output meaningful and easy to understand results

Backend Data Handling

Machine Learning Results							
Classification Rep	oort:						
Accuracy: 80.17%							
alue - Encoding Table							
Value	Encoding						
Fatal	0						
Incapacitating	1						
Possible	2						
Label	Precision	Recall	F1-score	Support			
0	1.00	1.00	1.00	47.0			
1	0.55	0.32	0.41	268.0			
2	0.83	0.93	0.88	956.0			
macro avg	0.79	0.75	0.76	1271.0			
weighted avg	0.78	0.80	0.78	1271.0			

Machine Learning Results Page

Future Work

- 1. Expand dataset to include more accurate weather data.
- 2. Improve ML models with more experimentation.
- 3. Improve web tool interface.

0.150

0.100

Importance Score