

Alaska Car Crash Analysis By Moro Bamber, Youji Seto, and Nemed Aleman

Our Mission

- 1. Discover new insights into car crashes in Alaska
- Create web application that allows users to select variables for use in ML models that produce results the user can easily interpret
- 3. Allow new data to be added for better accuracy

Project Background

- Building on previous capstone project
- Crash data is provided by the Alaska DoT
- Client: Dr. Visudevan from UAA Civil
 Engineering
- Exploring new ways to look at the data and adding new variables
 - like an urban vs. rural classification

Dr. Visudevan

Societal Relevance

Web application

- Easier for traffic engineers to filter and analyze data
- Making ML tool accessible to people with limited experience with ML
- Making data accessible to more people

Research

- Rural vs. Urban Study
- Identified crash characteristics were different among different areas
- Agencies can allocate resources according to challenges faced in different areas
- Allocate resources for safety protocols

Design Requirements - ML

• Develop models that identify risk factors contributing to car crashes in rural versus urban Alaska.

• The models should be able to accurately classify these factors based on the data provided, drawing meaningful insights from the comparison

Design Requirements - Web Application

- Use Django to serve as the framework for the machine learning model.
- Allow users to interact with the ML model, showcasing the findings through an easy-to-navigate UI.
- Provide functionality for users to upload new car crash data, ensuring specific fields are present for model processing.
- Display data in a user-friendly format, making the insights clear and easy to interpret.
- Implement data security measures, such as password protection, for accessing sensitive data and model results.
- Ensure the web app supports scalability for potential future expansions or additional data integrations

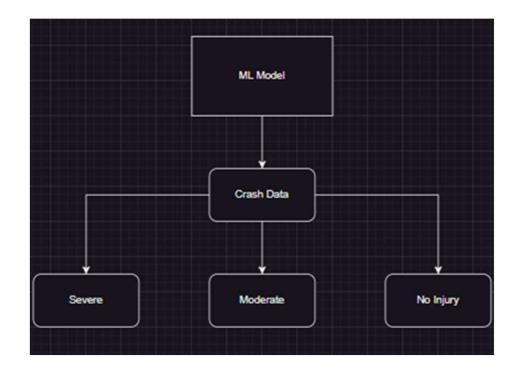
ML Models

Classification Models

- Decision Trees Effective for multi-class classification problems
- Gradient Boosting Machines (XGBoost) Often achieve high accuracy
- Random Forest
- Support Vector Machine (SVM) Useful for high dimensional data (too many features)
- Multilevel Models Effective for grouped data

"What factors are most strongly associated with crashes in urban areas?"

Decision Trees/Random Forest for identifying key features.

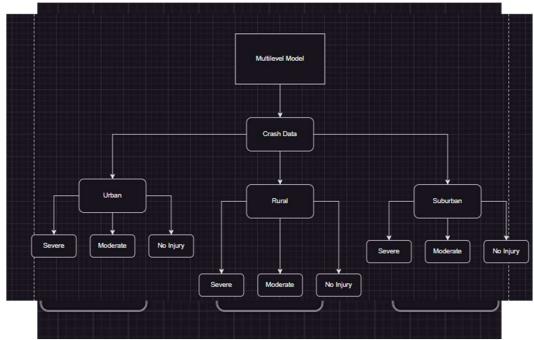

ML Models

What is the ML model doing?

- trying to predict which crash severity type a car crash is based on the features (alcohol, time, car body type, car year, etc.)

How does it do this?

- The model first identifies patterns that help it to recognize which combination of features makes a car crash a certain severity type based off of known data


Why Use the Multilevel Model?

Enables Advanced Analysis:

• Analyzes data in a nested structure for area-specific insights.

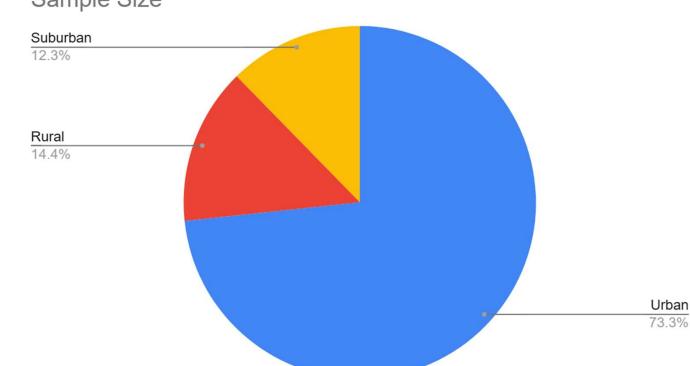
Key Question:

 "Which contributing factor correlates most with a specific crash type based on area (urban, rural, suburban)?"

No Injury						
	Rural	Urban	Suburban			
Accuracy	0.677176	0.621314	0.657425			
Precision	0.665501	0.622782	0.645201			
Recall	0.708802	0.61599	0.699416			
F1	0.686278	0.619257	0.671076			
ROC_AUC	0.746404	0.672016	0.709973			

Moderate						
	Rural	Urban	Suburban			
Accuracy	0.633249	0.625315	0.628689			
Precision	0.622902	0.622092	0.62212			
Recall	0.677163	0.638882	0.655841			
F1	0.648419	0.630216	0.638142			
ROC_AUC	0.688476	0.678145	0.676658			

Severe						
	Rural	Urban	Suburban			
Accuracy	0.772269	0.734445	0.751527			
Precision	0.787462	0.750433	0.764069			
Recall	0.745533	0.705639	0.731666			
F1	0.765655	0.726248	0.74572			
ROC_AUC	0.843473	0.806915	0.811955			

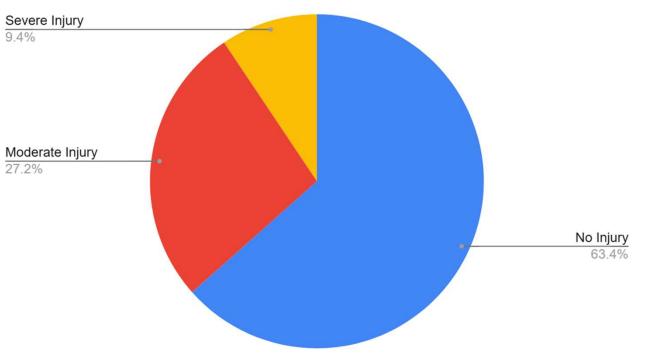

Best Performance Category

- Rural areas: 77.2% accuracy (84.3% ROC-AUC)
- Suburban areas: 75.2% accuracy (81.2% ROC-AUC)
- Urban areas: 73.4% accuracy (80.7% ROC-AUC)

Most reliable predictions are for **severe accidents**, especially in rural areas.

Dataset

Sample Size


	Sample Size
Urban	26,386
Rural	5170
Suburban	4434

Dataset

Rural Area Crashes				
No Injury	3,343			
Moderate Injury	1,432			
Severe Injury	495			

Rural Area Crashes

Тор	10 most important features:	
	Feature	Importance
12	alcohol_freq	0.083098
19	body_type_freq	0.077582
3	Crash_Type_freq	0.073130
18	Month_freq	0.064813
20	<pre>model_year_freq</pre>	0.059957
10	Causal_Unit_First_Event_freq	0.059696
2	Causal_Unit_Action_freq	0.058836
17	<pre>time_of_day_freq</pre>	0.051590
1	First_Harmful_Event_freq	0.049454
22	distracted_freq	0.047551

Rural

Тор	10 most important features:	
	Feature	Importance
3	Crash_Type_freq	0.159266
8	Manner_Of_Collision_freq	0.068681
20	<pre>model_year_freq</pre>	0.066952
17	time_of_day_freq	0.066510
10	Causal_Unit_First_Event_freq	0.057000
19	body_type_freq	0.055865
18	Month_freq	0.054768
2	Causal_Unit_Action_freq	0.049168
12	alcohol_freq	0.046615
15	Surface_freq	0.041305

Urban

Тор	10 most important features:	
145	Feature	Importance
19	body_type_freq	0.076251
20	<pre>model_year_freq</pre>	0.073478
12	alcohol_freq	0.071119
3	Crash_Type_freq	0.065130
10	Causal_Unit_First_Event_freq	0.064205
18	Month_freq	0.062674
17	time_of_day_freq	0.061466
1	First_Harmful_Event_freq	0.054303
2	Causal_Unit_Action_freq	0.051677
6	Weather_freq	0.042204

Suburban

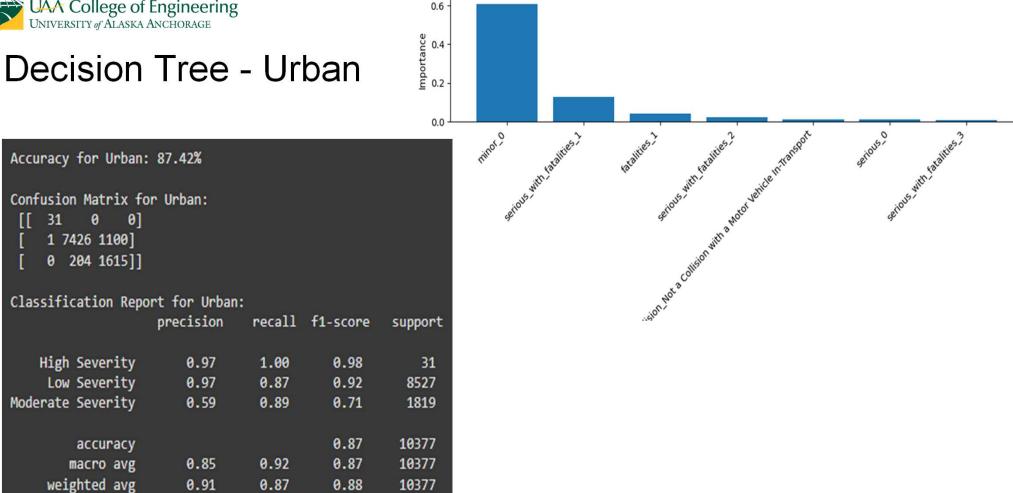
Rural Areas

- Vehicle characteristics play a crucial role in rural severe crashes
- Seasonal patterns are more important in rural areas
- Alcohol is a more significant factor compared to other areas

Urban Areas

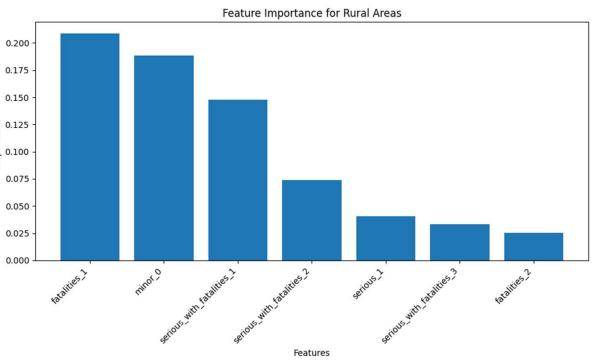
- Specific crash types dominate urban severe accidents
- Traffic patterns and vehicle interactions are crucial
- Time of day is more important than in rural areas

Suburban Areas


- Shows a hybrid pattern between urban and rural
- More balanced distribution of important factors
- Vehicle characteristics remain important

Prevention Strategies

- Rural: Target alcohol and vehicle-specific measures
 - Stronger alcohol prevention measures
- Urban: Focus on traffic management and crash prevention
 - Time-based traffic management
- Suburban: Implement hybrid approaches
 - Mix of both urban and rural



Feature Importance for Urban Areas

Decision Tree - Rural

Accuracy for Rural: Confusion Matrix fo [[35 4 0] [0 1512 40] [2 126 158]]					Importance
Classification Repo	rt for Rural:				
reconcilianter maje	precision		f1-score	support	
High Severity	0.95	0.90	0.92	39	
Low Severity	0.92	0.97	0.95	1552	
Moderate Severity	0.80	0.55	0.65	286	
accuracy			0.91	1877	
macro avg	0.89	0.81	0.84	1877	
weighted avg	0.90	0.91	0.90	1877	
0					

Decision Tree - Suburban

								Fea	ature Importance for Su	burban Areas		
					0.25 -							
Accuracy for Subur	ban: 85.33%				0.20 -							
Confusion Matrix f [[16 1 2] [0 1195 194] [1 45 203]]	or Suburban:				0.15 - bortan M 0.10 -							
Classification Rep	ort for Subur	ban:										
	precision	recall	f1-score	support	0.05 -					_		
High Severity	0.94	0.84	0.89	19								
Low Severity	0.96	0.86	0.91	1389	0.00	0	~	~	0 2	3	~	2
Moderate Severity	0.51	0.82	0.63	249		ninor O serious with	tatalities.	Fatalities.1	statues, and statu	ous with faatties?	epious 1 distracted intro	6 .
accuracy			0.85	1657		SWITT			SWILL	SWIC	stiade	
macro avg	0.80	0.84	0.81	1657		cetiou			eriou. eri	01	9.	
weighted avg	0.89	0.85	0.87	1657					Features			

Web Application

Alaska Crash Data Analysis

Home Upload Datasets ML Models

Advanced Analysis

Data Upload
Easily upload crash data files for analysis. Supports multiple file format.

Utilize machine learning models to identify patterns and predict high-risk areas.

Access and manage historical crash data records with our intuitive interface.

Handling Data

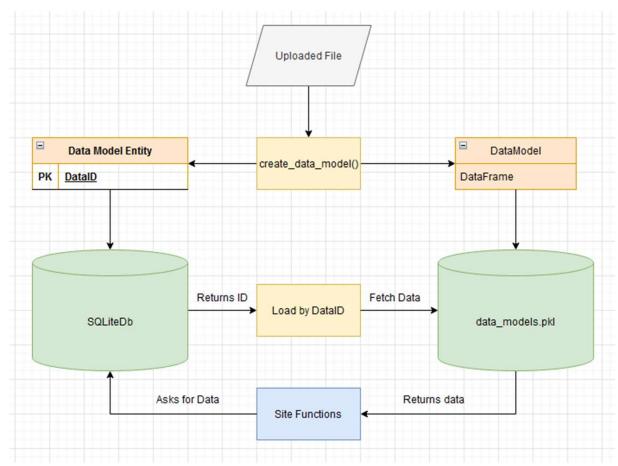
Alaska Crash Data Analysis

Upload Parameters

Start Year: 2004

End Year: 2004

Header Size (Optional): Enter header size Click for more info Rename Dataset (Optional): Select File: Browse... No file selected. Upload File Alaska Crash Data Analysis


Datasets

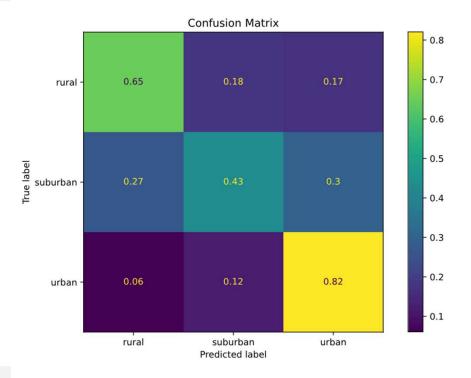
Data ID	Name	Date Uploaded	Start Year	End Year
<u>crashdata_2013_2017</u>	crashdata	Nov. 22, 2024, 12:20 p.m.	2013	2017
newtest0912_2009_2012	newtest0912	Nov. 22, 2024, 12:21 p.m.	2009	2012
rural_suburban_winter_2013_2017	rural_suburban_winter	Nov. 24, 2024, 4:31 p.m.	2013	2017
all_winter_test_2013_2017	all_winter_test	Nov. 24, 2024, 5:30 p.m.	2013	2017
DoT_test_2013_2017	DoT_test	Nov. 25, 2024, 11:50 a.m.	2013	2017

Alaska Crash Data Analysis Tool 2024 - University of Alaska Anchorage College of Engineering

Backend Data Pipeline

Machine Learning Results

Machine Learning Results


Classification Report:

Accuracy: 75.67%

Value - Encoding Table

Value	Encoding
rural	0
suburban	1
urban	2

Label	Precision	Recall	F1-score	Support
0	0.48	0.65	0.55	664.0
1	0.32	0.43	0.37	747.0
2	0.92	0.82	0.87	4668.0
macro avg	0.57	0.63	0.60	6079.0
weighted avg	0.80	0.76	0.77	6079.0

What did you learn?

Moro: How to build a django web application. How to structure code for Machine Learning models in a web application. How to handle and parse large datasets efficiently using SQL and Python.

Youji: Techniques involving balancing data (SMOTE, weights, removing excess data), data preprocessing: identifying which features or columns are necessary, story behind what the model is predicting.

Nemed: Selecting appropriate machine learning models for a real-world classification problem. Evaluation metrics and techniques like cross-validation, grid search, statistical analysis(Chi-Square test), and Cramér's V. Software development cycles.

Questions?