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Abstract

Although music tempo estimation is a well-established task in the Music Information Retrieval (MIR)
�eld, it typically relies solely on audio data analysis, not taking into account the human brain’s
response to the music. In our project, we explore a new approach to music tempo estimation by
analyzing data from the Naturalistic Music EEGDataset - Tempo (NMED-T), which consists of
electroencephalogram (EEG) data collected from participants who listened to a set of songs. We
propose that deep learning can �nd features in the brain data that can be directly correlated to music
tempo and use three separate deep learning models to showcase this. We discuss the results of each of
the models and outline future work that can be done to improve their performance.

1. Introduction

Tempo estimation is a fundamental MIR task with a wide range of practical applications that, among
others, include exercise tempo synchronization or smart playlist generation [1]. It bene�ts from the
existence of a stable tempo, which is often present inWestern music like pop, rock, and electronic
dance music. When music features this consistent and steady beat, individuals, particularly those with
musical training, often �nd it easy to pick up on and clap or tap along with the beat.

Similarly, a computer is able to easily estimate the tempo of a song with a steady beat by processing its
audio data. A variety of lower level signal processing and higher level machine learning techniques have
been developed to perform tempo estimation or beat tracking frommusic recordings, and are what is
generally used in practice for any type of tempo estimation applications [2].

One approach that has been under-researched in the MIR �eld is music tempo estimation from brain
wave data. While machine learning and deep neural networks have proven to be an e�ective way to
track the tempo in audio data, these techniques have rarely been applied to brain data.
The challenges of noisy data and limited datasets may hinder the application of machine learning in
this �eld. However, pursuing this research is justi�ed given the established knowledge that the human
brain synchronizes with rhythmic sequences, a phenomenon observable in EEG data through
increased voltage magnitudes. In this research, we seek to leverage this property of the brain to build
models that enable us to correctly identify the tempo of a song that a person was listening to.
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2. The Data

2.1. Dataset

The NMED-T dataset [3] consists of dense-array EEG responses from 20 adult participants who each
listened to 10 songs (Table 1). These songs were selected for their steady beat and were of a familiar
(Western) musical tradition to the participants. Most participants had musical training and listened to
music regularly. Data collection was performed by the Center for Computer Research inMusic and
Acoustics (CCRMA) at Stanford University in a comfortable and isolated environment where music
was presented to the participants through speakers [4].

Table 1. Table of songs and tempos in the NMED-T dataset. All ten songs range between 4:30 to 5:00
minutes and 55 to 150 beats per minute (bpm). Songs are listed in ascending order of tempo.

After data collection, the EEG responses were then cleaned and preprocessed, downsampled to a
sampling rate of 125 Hz, and made available to download inMatlab format. Each song’s EEG data is
stored in a separate Matlab �le, where 24 bit numeric values representing microvolts are arranged in an
array of size 125 x T x 20 (electrodes x song time x participant). Although the raw EEG data from the
NMED-T dataset is also provided, only the cleaned and preprocessed data will be used to train the
machine learning models for this project, as custom cleaning of the data is beyond our scope.
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# Song Title Artist Tempo (bpm) Tempo (Hz) min:sec Datapoints

1 First Fires Bonobo 55.97 0.9328 4:38 34750

2 Oino LA Priest 69.44 1.1574 4:31 33875

3 Tiptoes Daedelus 74.26 1.2376 4:36 34500

4 Careless Love Croquet Club 82.42 1.3736 4:54 36750

5 Lebanese Blonde Thievery Corporation 91.46 1.5244 4:49 36125

6 Canopée Polo & Pan 96.15 1.6026 4:36 34500

7 Doing Yoga Kazy Lambist 108.70 1.8116 4:52 36500

8 Until the Sun Needs to Rise Rüfüs du Sol 120.00 2.0000 4:52 36500

9 Silent Shout The Knife 128.21 2.1368 4:54 36750

10 The Last Thing You Should Do David Bowie 150.00 2.5000 4:58 37250



2.2. Further Data Processing

The following additional preparation steps were performed on the data before it could be input into
the machine learning models.

First, reliable component analysis (RCA) was performed inMatlab on each of the 10 songs’
3-dimensional data matrix in order to reduce its dimensionality along the electrode dimension. This
took the data from a 125 x song time x 20matrix to a song time x 20matrix for each song (Figure 1).
RCA is a signal processing technique shown to reduce the signal-to-noise ratio of EEG data while also
reducing the dimensionality of the data by extracting the maximally reliable component of the
electrode dimension [5]. By using RCA, we hoped to speed up the training time of the model and
increase performance without losing important information.

Figure 1. Dimensionality reduction of the data along the electrode dimension using RCA.

Second, a uniform amount of data was retained across each song in order for the models to be able to
ingest the entire dataset without making adjustments to the model architecture each time. Per song, a
uniform 4 minutes of data were retained starting from 15 seconds into the song, enough time for the
participants to pick up on the beat [3]. This uniform sized data was exported fromMatlab as a .mat
�le, with the ‘data’ variable storing the song time x 20matrix.

Following this, the data from all the songs was aggregated into csv �les using a Python script. The
output data frame was of size 200 x song time. During this step, data was labeled for classi�cation,
resulting in two separate csv �les, one where the ‘label’ column contained the labels for 3 classes and
the other where it contained the labels for 5 classes (Table 2). First, the 3-class model was created to
di�erentiate between slow, medium, and fast tempo songs. Then, the model was �ne tuned to
di�erentiate between 5 classes of tempos, which is half the number of songs in the dataset. Because the
tempos of the songs were not equidistant from each other across the dataset, labeling resulted in
unequal representation of songs within each class, which was amended by class weighting.
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# Song Title Tempo (bpm) 3 classes 5 classes

1 First Fires 55.97 0 0

2 Oino 69.44 0 0

3 Tiptoes 74.26 0 1

4 Careless Love 82.42 0 1

5 Lebanese Blonde 91.46 1 2

6 Canopée 96.15 1 2

7 Doing Yoga 108.70 1 2

8 Until the Sun Needs to Rise 120.00 1 3

9 Silent Shout 128.21 2 3

10 The Last Thing You Should Do 150.00 2 4

Table 2. Distribution of class labels for the classi�cation model across the ten songs.

Third, each sample row (vector) of data was centered around the mean and then normalized using L2
normalization, which is a technique used to scale vectors by dividing each vector component by the
Euclidean norm, ensuring that the resulting vectors have a magnitude of 1 (Figure 2). By normalizing
the data in this way, we hoped to reduce the in�uence of outliers in our dataset and make the data more
interpretable by the model algorithms.

Figure 2. L2 normalization, where |x| represents the Euclidean norm of each vector.

Fourth, we implemented the option to synthetically augment the size of the dataset during model
training by splitting each sample into equally large sections (Figure 3). Due to the small size of our
dataset (200 samples) and the low variety in songs, we hoped that increasing the size of the dataset
would help counteract over�tting. This method of slicing was possible because all ten songs exhibited a
steady constant beat, meaning that the global tempo of the song would not be di�erent from local
tempos within each section.
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Figure 3. Example of synthetic data augmentation by slicing a sample into four equally large chunks.

Lastly, we performed k-fold cross-validation while training the models to assess their performance
across di�erent subsets of the dataset and gather results that were less dependent on a certain dataset
split. Before model training, the training set was divided into 10 folds - one per song - and cross
validation was performed on each fold (Figure 4). We speci�cally created the folds this way to also get
an idea of how well the models would generalize to a new song they hadn’t encountered before during
training.

Figure 4.K-fold cross validation with 10 folds.

2.3. Testing Data Validity

To ensure that our data was being transformed properly after each step we would print out test values
and ensure that they were properly transformed. Further advancements on this would likely want test
cases to ensure that it was properly changed. After any data splitting we would also need to ensure that
the shape of the newly formed data was what we expected. This was simple as it just required a print
out of the shape and comparing the new shape with the expected (window size x frequency).
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3. Methodology

3.1. Model Selection

Three separate deep learning models were created to perform tempo estimation on the dataset. A
Multilayer Perceptron (MLP) was used for multiple linear regression. A 2-dimensional Convolutional
Neural Network (CNN) was used for regression. A 1-dimensional CNNwas used for multiclass
classi�cation.

Before we continue into the speci�cs of the models we would like to give an overview of what the
speci�c machine learning models are and why they can be useful for this type of data. AnMLP is a type
of arti�cial neural network that is fully connected. These layers are each a complete bipartite graph

where m and n are the sizes of the connected layers between each layer. These are useful for𝐾
𝑚,𝑛

�nding non linear relationships in a dataset. A CNN is a neural network whose architecture builds
upon the MLP. A CNN adds convolutional layers on top of the MLP’s fully connected layers. These
convolutional layers apply a sliding dot product of customizable size to the data and are useful for
�nding spatial and temporal features.

3.2. MLP for multiple linear regression

The multilayer perceptron implemented multiple linear regression on the Reliable Component
Analysis (RCA) �ltered EEG data. It processed this data through an input layer comprising 30,000
nodes, which was fully connected to a dense layer consisting of 128 nodes. In this dense layer, a linear
activation function was applied to the nodes. Then, the dense layer was fully connected to the output
layer, which comprised a single node (refer to Figure 5). This model was selected to �gure out how
accurately a relatively non-complex model would be able to predict song tempos.

Figure 5. Architecture of the MLP for multiple linear regression
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3.3. 2D CNN for regression

The 2-dimensional CNN used for regression used the data across all of the electrodes instead of using
the Reliable Component of each of the song time samples. The model architecture was quick to over�t
when made too complicated or dense and under�t when it was not complicated enough. The line
between these model types was small and even the smallest of changes had deep impacts on the �nal
outcomes. The model that we had the best results with consisted of two convolutional layers and two
max pooling layers between both of them as shown in Figure 6. The output from the max pooling layer
was �attened and fed into a dense layer of 256 neurons which was fully connected to a dense layer of
128 neurons, which was fed into the output neuron. To help mitigate the problem of over�tting I
chose an aggressive dropout rate of 40% between every layer. Previous research has shown that 2D
CNN’s of similar complexity have been successfully used on EEG data [6].

Figure 6.Model architecture of the 2-dimensional CNN for regression.

3.4. 1D CNN for multiclass classification

1-dimensional convolutional neural networks excel in processing time-series data while requiring less
computational power than other methods used for the same purpose. Because time-series data is
required, the 1-dimensional RCA-�ltered data was used at the input layer. As mentioned before,
classi�cation was �rst attempted with three labels for the song tempo (slow = 0, medium = 1, fast = 2)
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to establish a baseline model. The hyperparameters of the 3-class model were �ne-tuned and the same
model was used with 5 labels to create a more precise tempo classi�er.

The architecture of the 3-class model is shown in Figure 7. It consists of four hidden layers: two
convolutional layers with max pooling and two dense layers with dropout. The output of the last
dropout layer led into three neurons which produced the probabilities for a sample to be in each of the
three classes. The model architecture for the 5-class model is the same, except that its output layer
contains �ve neurons.

Figure 7.Model architecture of the 1-dimensional CNN for 3-class classi�cation.

For both models, hyperparameters were tuned to the following:
- The kernel con�guration in the two convolutional layers was 16 kernels of size 3 at a stride of 1

and 8 kernels of size 3 at a stride of 3.
- The pool size in the max pooling layers was set to 2.
- The number of kernels in the two dense layers was 16 and 8.
- Hyperbolic tangent (tanh) was used as the activation function for all hidden layers since we

were working with a normalized dataset.
- Adam was used as the optimizer.
- The dropout rate was set to 25%.
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4. Results

The results were promising for all three models. As expected, the 2D CNN had better performance for
regression than the MLP, as it was able to capture more complex patterns using the convolutional
layers. We found that with all three models there was a trend to predict more accurately in the median
tempo range of the dataset, which is where the data density was greatest. Meanwhile, the error would
increase drastically approaching the fastest tempos and would increase mildly approaching the slowest
tempos. This is in line with the distribution of data across the tempo range of the dataset. The loss
function used was mean squared error (MSE) for regression and sparse categorical cross-entropy for
classi�cation.

4.1. MLP for multiple linear regression results

The multilayer perceptron implementing multiple linear regression showed the worst results between
the two regression models. The mean squared error on the test data was 827.1. As you can see in �gure
8, the model was very inconsistent. There are many outliers and generally inaccurate predictions.
However, when training time is taken into account the model performance becomes much more
appealing. The model trained itself on the data in only 5.16 seconds. This is the fastest training time
among the three models we created. This shows the bene�t of this kind of model very well. It is simple
and fast, yet potentially inaccurate.

Figure 8.Dot and box plot of MLP for multiple linear regression results.
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4.2. 2D CNN for regression results

The results for the 2D CNN did well in the high density tempo range around 90 bpm and started to
get worse as we left this range with the highest error being at the much higher tempo ranges around
150 (Figure 9). What is interesting is that the error is much higher on the high end of the tempos as it is
on the lower end of the tempos. What we found is that the octave error of the highest bpm is more
pronounced than in any other songs. What this could potentially mean is that there is a participant that
is experiencing the 150 bpm song as a half octave down or at around 75 bpm. The issue that this also
plays on our results is that it adds more data to the middle where the model is going to see that more of
the data still belongs within that range, possibly causing it to over emphasize that region of high
density.

Figure 9. Bar graph plot showing the mean squared error (MSE) for each class.

4.3. 1D CNN for multiclass classification results

Classi�cation yielded satisfactory results, with the best accuracy being 87.5% for the 3-class model and
85% for the 5-class model. It makes sense that the 3-class model would perform better, since the
prediction buckets are larger and there are less of them. Besides printing the accuracy metric, confusion
matrices were used to visualize model performance by plotting the counts of correctly predicted classes
and falsely predicted classes for each class as can be seen in Figure 10.
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Figure 10. Confusion matrix for the classi�cation model with 3 classes (top) and 5 classes (bottom).
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Whether due to the complexity of the chosen architecture, the small size of the dataset, or other
factors, both classi�cation models struggled with over�tting, and would converge very rapidly as can be
seen in Figure 11.

Figure 11.Model convergence for classi�cation with 3 classes.

4.4. Challenges

We encountered three main challenges throughout the project that manifested themselves in our
results: (1) There was a higher density of data around the 90 bpm tempo range and our models
experienced bias towards predicting closer to these values or had better accuracy when predicting on
samples within this range. Using class weighting schemes proved to mitigate this in the classi�cation
approach. (2) For very fast and very slow tempos the models began su�ering from the e�ect of octave
error. In this context, octave error occurs when a person perceives tempo as being at an integer multiple
or fraction of the tempo that the song is listed at, which occurs more often with very slow or very fast
tempos [7]. If while listening a participant’s brain synchronizes to a tempo an octave removed from the
actual tempo, it renders the target values and labels for that sample incorrect, which makes the model
struggle to make accurate predictions. Because human brains tend to favor synchronizing with
middling tempos rather than very slow or fast tempos, octave error also contributes to the higher
prediction density around 90 bpm. (3) Our dataset was large in size (30’000 data points per sample)
but small in song variety, so our models were prone to over�tting despite measures taken to counteract
it.
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5. Future Work

To improve the performance of the models and our understanding of the data, we would like to
explore the following in future work: (1) Creating a two-feature model by fusing both the time series
data and the frequency domain of the EEG data could help the model hone in on a prediction better.
(2) In our regression models we would like to account for the higher density of data in the middling
tempo ranges using a weighting technique, as this might reduce the error for slow or fast tempo songs.
(3) Making the loss invariant to the octave error would be a more realistic way to estimate tempo and is
easier to accomplish than identifying and accounting for octave error in participant perception. With
this change, the models would accept tempos predicted at half or double the actual tempo as a correct
prediction. (4) Changing the target value from beats per minute (bpm) to beats per second (Hz).
(5) Adapt the models to work on other datasets and incorporate transfer learning.

6. Conclusion

In this project we created three di�erent deep learning models to test our hypothesis that machine
learning can be applied to EEG data to �nd features in the data that can be used to determine song
tempo. The �rst, and simplest, model was a multilayer perceptron that implemented multiple linear
regression. This model performed the worst out of all the models, but it required the least training
time. The second model was a 2D convolutional neural network (CNN) for regression. This model
performed well around the areas of high density and poorly outside of this. Using K-fold cross
validation across the 10 songs showed this was the case when using the outer songs as validation as
opposed to the inner songs. The third model we created was a 1D CNN for multiclass classi�cation
which yielded satisfactory results at 87.5% accuracy with 3 classes and 85% accuracy with 5 classes.

Each one of our models showed the same tendency to predict closer to the median of all the song
tempos. This resulted in higher accuracies in that tempo range and much worse accuracies in the lower
and higher tempo ranges. This problem was caused in part because of the nature of our dataset as well
as a phenomenon called octave error. The �rst part of this problem could be addressed in future work
by using larger data sets, or by using more data sets in addition to the NMED-T data set we used in this
project. The octave error portion of this problem could be addressed by making the loss invariant to
the octave error. Despite these issues, we have shown that this method of tempo estimation is valid.
With some future work and problem solving, this method could become accurate enough to be used in
real world applications.
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Appendix A: Requirements

Since this was a research project without a client stakeholder, no formal requirements had been set
forth for us. We came up with the following requirements to guide our process. These requirements
have been informally adjusted multiple times throughout the duration of the project.

1. Functional Requirements

a. The machine learning model must be able to ingest the preprocessed EEG data of an
static agreed-upon or dynamically changeable size.

b. Data must be split into test, training, and validation sets that maintain an equal
distribution of songs.

c. The best-result models must be able to predict the tempo of the songs that form part of
the validation set data to a certain degree of accuracy.

d. Informative data visualizations must be created to evaluate the performance of a
trained model using matplotlib.

e. The best-result models must be saved as a .keras �le, along with a summary of model
performance metrics and accompanying visualizations.

2. Non-functional Requirements

a. EEG data �les must follow an agreed-upon �le naming convention and row/column
structure and naming convention.

b. Source code must contain concise comments that explain the why as well as the what of
the code.

c. Use docstrings to document functions and classes within the code according to PEP
257 standards.

d. A trained model should be able to perform a prediction within negligible time to be
considered successful.
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3. System Speci�cations

a. Programming Languages
i. Matlab will be used to perform the signal processing part of the data

preprocessing.
ii. Python will be used to perform the remaining data manipulation and program

the machine learning models using the following libraries:
1. scikit-learn
2. keras

b. Hardware
i. Google Colab paid-for hardware options will be used to train the machine

learning models:
1. NVIDIA V100 GPU
2. NVIDIA T4 GPU
3. High RAM environment

c. Team Collaboration
i. Google Drive will be used for �le sharing and team collaboration on

deliverables.
ii. Discord will be used for daily communication and asking/answering questions.
iii. Zoom will be used for weekly teammeetings with the faculty advisors.
iv. Google Colab will be used for programming collaboration.
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Appendix B: Software Development Process

At �rst we created one very simple model to ensure that all the data preprocessing steps were working
correctly. We then decided to split up and create separate models based on that �rst simple model. The
development of these models was iterative in nature. We would try an architecture, test the model’s
performance, then tune the hyperparameters or switch to a di�erent architecture. There were many
times when we wanted to implement an advanced technique that we weren’t familiar with. We would
need to research this topic for a while, until we understood how it would a�ect our model, and then
�gure out how to implement it into our model. Because this was a research project, there weren’t any
speci�c performance requirements. Our goal was to gradually improve our models to see how accurate
we could make them before our deadline arrived.

Planned project timeline:
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Appendix C: Actions Taken From Code Inspection

The code inspection identi�ed 20 defects in our submissions. We addressed each defect as follows:

1. Naming conventions vary:
This defect was considered a non-issue and nothing was changed. Our code uses the standard scienti�c
notation for some variables which comes o� as inconsistent but is actually more clear for someone who
is familiar with our topic and its related �elds.

2. Repetitive code for removing song:
This defect was considered a non-issue and nothing was changed. In the interest of time, and because
the defect wasn’t too extreme, we decided to leave the code as it was.

3. Replace generic exception with speci�c one; consider retaining generic:
A speci�c exception handler for a FileNotFound error was implemented while retaining the generic
exception handler.

4. Naming convention to di�erentiate objects:
That section of code used a variable of the name “history” which has a commonly used “history”
method attached to it. The variable name was changed to model_history for better readability.

5. Combine if IN_COLAB blocks:
These separate if statements with the same condition were joined.

6. Why catch an exception to raise another exception:
We added a print statement inside of the exception catch to add a bit more information for debugging
before raising the error again and exiting the program.

7. Long data. reference line could be broken up:
This defect was considered a non-issue and nothing was changed. In the interest of time, and because
the defect wasn’t too extreme, we decided to leave the code as it was.

8. Structure code with functions:
The code for creating box plot diagrams was converted to a function.
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9. Consider learn rate decay for training the NN:
This suggestion was considered, but our advisor advised against us using it due to complexity so we
didn’t implement it.

10. Table & boxplot could use some more detail -- label numbers, add legend:
The boxplot diagram had labels and a legend added to it.

11. Lower case EEGNet variable name:
This defect is similar to #1 and received the same response; nothing was changed.

12. DRY: duplicate code between �les:
In order to give each member of the group as much control over their model as possible, we decided to
keep our code as it was. Even though much of the code is repeated.

13. Some lines of code are long so maybe split the lines (makes code readable):
The longest lines in the code were broken up and o�set for readability.

14. Change how number of participants and song name are entered, not hard coded in:
This defect report did not provide a useful line number so some general elimination of hardcoded
values was performed.

15. Magic number, 60 (probably OK):
This defect was considered a non-issue and nothing was changed. In the interest of time, and because
the defect wasn’t too extreme, we decided to leave the code as it was.

16. Would be easier to visualize the data in a plot instead of a table:
Data visualizations have been created.

17. Y-axis label is vague, "Tempo (bpm)":
Axis label changed to “Predicted beats-per-minute (BPM)”. This label is much more descriptive.

18. Magic numbers
This defect was considered a non-issue and nothing was changed. In the interest of time, and because
the defect wasn’t too extreme, we decided to leave the code as it was.
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19. A bit too many comments:
The code was inspected in an unusual format which made the commenting seem extreme. In Google
Colab, where the code will usually be used, the commenting is formatted nicely and is very helpful. For
these reasons we decided to leave the code unchanged.

20. Can you add the actual tempo for reference to the box plot?:
Lines to denote the target tempo were added to the plot.
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Appendix D: Code Listing and Model Usage Documentation

Source code for helper �les can be found on our github repo.
● save_song_data_as_csv.py - Eleonora created this �le to run a lot of the scripts to aggregate,

manipulate, and label the data.
● plot_trial_FD.m, plot_trial_TD.m, run_and_plot_RCA.m, run_rca.m - Files originally from

Dr. Kaneshiro’s toolbox code that help visualize the data that Eleonora refactored slightly.
● compare_plots.m, retain_uniform_trial_data.m, save_FD_data.m, save_rca_�ltered_songs.m -

Matlab helper code written by Eleonora to export data to .mat �les.

Source code for model setup and training can be found on Google Colab:
● linear_reg_mlp.ipynb - Code that loads in, normalizes, and splits the EEG data before setting

up the MLP for multiple linear regression and training the model. Written by Eleonora (50%)
with refactoring fromQuinton (50%).

● classi�cation_3_classes.ipynb - Code that loads in, normalizes, and splits the EEG data before
setting up the 1D CNN and training the model as a 3-class classi�er. Written by Eleonora
(90%) with refactoring from Jaren (10%).

● classi�cation_5_classes.ipynb - Code that loads in, normalizes, and splits the EEG data before
setting up the 1D CNN and training the model as a 5-class classi�er. Written by Eleonora
(90%) with refactoring from Jaren (10%).

○ To train or run either classi�cation model, it needs to load in a csv �le containing the
aggregated, RCA-�ltered, and uniformly sized data from the NMED-T dataset. The
csv �le should be located at the �le path speci�ed in the code and contain the following
columns:

song_name label bpm beat_interval 0 … 29999

The label column represents the class label (0 - 2 for 3 classes and 0 - 4 for 5 classes),
and the columns 0 to 29999 represent the total number of data points (30000 data
points = 4 minutes of data at a sampling rate of 125 Hz).

In the code, the user can specify the size of the chunks that the data should be split up
in during synthetic data augmentation.
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https://github.com/eeg-tempo-ml/eeg-tempo-ml
https://github.com/blairkan/NMED_T_intro_matlab/tree/main
https://drive.google.com/file/d/15kNGUCF13eoZhBveLxS97vl47nRHmupP/view?usp=sharing
https://colab.research.google.com/drive/1bewICp9Gwh3hJzN3ueVf0oXeRKzp2MJc?usp=sharing
https://colab.research.google.com/drive/1m3i4hHXGSvVT-b_Gayt7MB5ZbT8veqne?usp=sharing


● regression_2d_CNN-Code that loads in, normalizes, and splits the EEG data before setting up
the 2D CNN and training the model as a regressor. Written by Jaren(95%) Eleonora(5%). The
initial start up code was hers. NOTE:Will not run unless using high vram and high ram.

○ To train and run this �le you must include all of the imputed.mat �les from the
NMED-T dataset and change the �lepath variable to the �le path where these 10 are
located.

○ Warning: The NMED-T dataset is very large and can consume around 10 gigs of ram
upon loading up.
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https://colab.research.google.com/drive/16DcAFrDtgEToJZlokV34fchE48MKBoss?usp=sharing

