
quayside.app
Final Report

Team Quaybit: Mya Schroder, Cam Dolan, Kai Iverson
CSCE A470 Capstone

Table of Content

Abstract..1
1. Introduction..1
2. Requirements... 2
3. Design.. 2

3.1 API Design...3
3.2 User Interface Design.. 4
3.3 Project Visualization.. 5
3.4 Algorithms... 7
3.5 Breaking a Project into Tasks.. 8

4. Software development process.. 10
4.1 Development Lifecycle and Work Schedules.. 10
4.2 Challenges..10
4.3 Debugging and Evaluations... 11

5. Results..12
5.1 Final Application... 12
5.2 Contribution Breakdown..13
5.3 Next Steps.. 14

6. Conclusions and Lessons Learned... 14
7. References..15
Appendix A: User Manual... 16

ii

Abstract

quayside.app is a web application designed to automate project management. It uses ChatGPT to
generate tasks for a project and helps manage those tasks as the project progresses. In Spring
2024, as part of CSCE A470 Capstone, Team Quaybit successfully refactored quayside.app into
the Django framework and added additional features including a REST API, updated graph
visuals, a kanban board, and more. Positive feedback from quayside.app’s users deemed this
project a success.

1. Introduction

74% of projects fail to meet project objectives (PMI, 2024). Our goal is to reduce that number by
developing quayside.app, a project management web application designed to get teams started on
projects quicker (see Figure 1) and answer the question “What’s next?”. quayside.app uses
ChatGPT to break a project into deliverables and help teams automate their project management.

Figure 1: quayside.app’s impact. (Williams, 2023)

Our community partner, Erik Williams has been a project manager for 7 years and is now the
COO of Beadedstream. In the summer of 2023, he came up with the vision for quayside.app.
Since then, quayside.app has been under development as an open source web application.

Over the course of the 2024 Spring semester in CSCE A470, Team Quaybit contributed to
quayside.app by converting the web application framework from next.js to Django to speed up
the development process and adding additional functionalities featured in the Requirements
section. Erik Williams remained our community partner throughout the semester. Additionally,
from time to time, developers outside of Team Quaybit worked on quayside.app (as this is an
open source project). However, the features we discuss in this report are solely the ones
developed by us during this semester.

1

2. Requirements

Refactoring this app meant we had to maintain already existing functionalities:
● Storage/view of users.
● Storage/view of projects.
● Task generation into tree with ChatGPT.
● Deletion of projects/tasks.
● Oath Sign in.
● Cloud hosting.
● Documentation with in-code comments/readme files and a GitHub wiki.

This meant we needed to translate all functions from the old next.js framework used in the
previous version of quayside.app to the new Django framework. These requirements had to be
fulfilled before moving on to meeting the requirements set for the new functionality to be
implemented this semester.

To get an idea of what kind of additional requirements to create for this project we conducted an
interview with Erik Williams. Using what we gathered from the interview we came up with the
following functionality requirements:

● REST API that can be accessible separate from the web application.
● Additional graph manipulation functions such as rearranging tasks, adding tasks, and tree

feedback.
● Kanban Board view for tasks.

○ Drag and drop task into different boards
● ChatGPT interacting regarding the project such as specific questions to keep the user on

track with tasks.
● Sharing capabilities such as invite by email.
● Settings page.
● Getting-started screen that the user can view without logging in.

3. Design

quayside.app is a containerized Django application hosted on Google Cloud Run. It uses
MongoDB to store data and interfaces with the ChatGPT3.5 API. The architecture of
quayside.app is broken into two distinct parts: the API and the APP. The API listens for a
request over the internet and responds with corresponding information. The APP also listens for
a request over the internet but it responds with a web page to view. The APP uses API requests to
get the information it uses to create the web page. A big advantage of separating our server into
two parts is that the API is independent of the website. We can use the API to connect to
quayside.app from any medium we want in the future.

2

3.1 API Design

Here are a few traits of a well designed API. The first trait is that it needs to give valuable
information while simultaneously protecting other sensitive information. For example, user A
should have access to their own projects, but should not have access to user B’s projects. Another
example is that a user that is not logged in should only be able to login, and nothing else.

The second trait is that the information an API gives should be as usable as possible. In other
words, the API should perform as much logic and computation on the information as it can
before sending the info off. There are three main reasons for this. Number 1 is that this makes the
API very easy to use. Number 2 is that this leaves the computation to the server and not the user.
Number 3 is that the API can be used in a consistent way across many mediums.

quayside.app’s API has both of these traits. We have systems in place to ensure that the API is
protected and we have also designed the API to give information in its most usable form. And
now, here is a breakdown of quayside.app’s API’s features.

There is a protected route to get, create, edit, and delete a list of tasks or a single task, filtered by
anything we want. Many of the other routes also deal with tasks. The flexibility and control we
gained through the tasks route made creating the other routes simpler.

A protected route called projects gets, creates, edits, and deletes projects. In quayside.app, a
project is a collection of tasks, along with other information such as the owners. We are also able
to get multiple projects at a time, filtered by anything we want using this route. This is used, for
example, to get the name of all of the projects that a user owns.

Along with the project route, we have a route to generate a project. This route is behind the most
important feature of quayside.app, breaking a project down into tasks. We discuss this route in
detail in section 3.5.

The kanban route is a protected route that makes it easy to view the tasks of a project, grouped
by their completion status. This route is discussed in the sections 3.3 and
section 3.4.

Finally, a protected route exists to get, create, and update a user. This route is important for our
session management and for project ownership. It is used to seamlessly create an account when a
user logs in for the first time.

3

3.2 User Interface Design

All of the web pages of quayside.app, besides the welcome page, contain the same sidebar and
header. The header has buttons to navigate to the home page, logout modal, and settings page. It
also displays the user's name, to visualize that they are logged in. The sidebar contains a
dropdown tab that displays all of the projects that a user owns. At the top of the sidebar is a big
button labeled “+ Project” that is used to open up the create project modal. In the future, as we
add more features, there will be access to more from the sidebar. Through the sidebar and header,
a user has a button to get to most of quayside.app from most places within quayside.app .

As stated earlier, the welcome page is an exception. It has no sidebar since the user is not logged
in yet. The welcome page exclaims “quayside.app Ignite Collaborative Productivity” before
showing off some of the features of quayside.app . The header prompts the user to login.

When a user navigates to one of their projects, a new header appears: the project header. It
contains the name of the project, a button to select the project visualization (more in section 3.3),
a button to create a new standalone task, a button to open the share project modal, and a delete
project button. When the delete button is pressed, the user is asked to confirm if they really want
to delete the project.

Figure 2 shows the task modal. When a user goes to create, edit or delete a task, they are brought
to the task modal. There is a field to add/edit the task name, completion status, data range, time
estimation and description. At the bottom left, a button to delete the task. At the bottom right, a
button to save the changes made.

Figure 2: Task Modal.

4

A settings page is currently in the works and will be completed in the near future. It will contain
the following tabs: Account, Team, Theme, Projects, Email, Notifications. The theme settings are
exciting because they allow the user to customize the look and feel of quayside.app . Users can
select their favorite background image, completion status colors, website color and font color.
quayside.app will keep the users theme when they logout and log back in.

3.3 Project Visualization

There are two ways to visualize a project in quayside.app: the project tree (Figure 3) and the
kanban board (Figure 4).

We designed the project tree visualization because it emphasizes larger tasks being broken down
into smaller tasks. At the root of the tree is the project itself. The first layer down represents the
tasks needed to complete the project. The next layer down represents subtasks needed to
complete the task above. The task is rendered the color corresponding to its completion status to
help the user visualize what they have done and what they need to do next. “+” buttons are on the
right of each task that allow a user to add new tasks and customize their project to their liking.

The tree is rendered using the D3 svg javascript library which generates nodes in a tree shape
given parent-child data relations. At each node, we add an svg colored box with each task’s text
and a “+” symbol. The box and “+” symbol is associated with the corresponding task modal url
so when the user clicks on those portions of the graph, it routes the user to the modal to edit or
create a new task.

5

Figure 3: Task tree.

The second project visualization we created is called a kanban board (Figure 4). A kanban board
shows each task, grouped by their completion status. A user can drag a task from one status to
another and the task will update to have its new status. quayside.app also maintains each task's
priority within the status. This means that when a user updates the kanban board, then leaves and
comes back, each task will have the correct status and be sorted in the same order within the
status.

6

Figure 4: Kanban Board.

3.4 Algorithms

Correctly updating and maintaining the kanban board proved to be a difficult challenge with a
clever solution. It all stems from an innocent question: how do we maintain the order of tasks
within a status? We start with a field in the tasks table, called priority, to store order within status.
Now, how do we initialize this value for each task in a project? The solution is to group each task
by status and then assign priority, starting from 0, counting up by 1. What if we want to change a
task's priority, how does that affect all of the other tasks priorities? What happens to the priority
and surrounding priorities when we want to move a task from one status to another? What
happens when we create a new task? What happens when we delete a task? What happens when
some priorities are null, some are integers, and the ones that are integers are arbitrarily spaced
apart?

The solution is contained in the updateKanban endpoint, and has three steps:

Step1: Normalize the priority of the tasks (Figure 5).
The goal of this step is to ensure every task in a status has a valid priority. Within a status, there
should be a task with 0 priority, 1 priority, 2 priority, and so on. We also want to maintain order
during this process. The trick is to sort tasks by priority, from smallest to largest, while letting
tasks with null priority goto the end of the list. Next we reassign all of the priorities, in the sorted
order, starting from 0 and counting up by 1.

7

Figure 5: Normalize Priority.

Step 2: Remove task from status list.
To correctly remove a task from the status list, we need to adjust the priority of other tasks within
the status list. For example, consider 5 tasks, sorted by priority, with the TODO status (0, 1, 2, 3,
4). If we remove the task with a priority of 2, we are left with a gap in priority (0, 1, 3, 4). To
resolve this, we decrement the priority of all tasks in the list with a priority greater than 2 (0, 1, 2,
3).

Step 3: Add the task to the new status list.
To make space for the task within this list, we need to do the opposite of what we did in step 2.
Here is the example: consider 6 sorted tasks in the DONE status (0, 1, 2, 3, 4, 5). We want the
inserted task to have a priority of 3. What we do is increment the priority of all tasks in the list
with a priority of 3 or greater (0, 1, 2, 4, 5, 6). We now have enough space to insert a task with a
priority of 3.

3.5 Breaking a Project into Tasks.

The most important feature of quayside.app: Describe your project to quayside.app, quayside.app
breaks your project into tasks and tells you need to do next. Here is how we pull this off.

It starts with the user's input. Our project prompt user interface (Figure 6) is very simple,
generalizable, and powerful. The user enters the name of the project, and a description as simple
or complex as they want, and quayside.app does the rest.

8

Figure 6: Project Prompt.

This information is passed to the generateProject route. From here we connect to openAIs GPT
API. We define the role of the model to be a project management assistant. We say that it needs
to turn the project name and description into tasks and subtasks. We instruct it to strictly respond
in the following format:

1 Task1
1.1 Subtask 1
1.2 Subtask 2
1.3 Subtask 3
2 Task 2
2.1 Subtask 1
2.2 Subtask 2
and so on…

We insert the project name and description into the prompt and let the large language model do
its thing. We have found that it reliably sticks to the format we tell it to respond in.

The next step is to parse the LLMs response. We split the response by ‘\n’ and use a regular
expression to determine if each line is a task or subtask, the parent task of each task, and the
name of each task. From here, we can simply use our existing project and task routes to create a
project.

9

4. Software development process

4.1 Development Lifecycle and Work Schedules

The development process occurred in two week iterations (shown in Figure 7). We usually met
with the community partner on a weekly basis to discuss progress or any problems. We also met
on our own time when deemed necessary. We usually worked individually with frequent
communication and collaboration through discord and GitHub. As mentioned earlier we
followed a two week iteration schedule similar to Agile. This means at the start of each iteration
the we would divide out the next scheduled tasks with the expectation that tasks would be
finished at the end of iteration. However some tasks could not be completed in their iteration
either due to either challenges impeding tasks completion or team members being occupied with
other responsibilities.

Figure 7: Project planning.

4.2 Challenges

Due to using a noSQL database with Django, which prefers SQL, many of Django’s built-in
functionalities that we could have used had to be manually implemented. This is where a large
chunk of the development process was spent for members tasked with those implementations.
Another challenge was that two members of the team weren’t familiar with JavaScript and
HTML prior to this project, so they had to spend more time on their frontend task.

10

4.3 Debugging and Evaluations

Debugging was done mostly through user testing and some implemented test cases. User testing
came mostly from heuristic evaluation done by our peers, friends, colleagues or ourselves. A
table of the bugs/critiques from the evaluation and the status of the bug can be seen below in
Table 1.

Heuristic Issue
(1-10) Severity (1-4) Description of Problem Status

7 2 No scroll bar -- if mouse wheel doesn't work Considering

no scrolling limit Fixed

8 1 When I click outside of the sign in box, the box does not disappear Considering

5 3 User can enter more than 4 numbers for year date project Considering

8 2
When entering and exiting the create task menu, the app lags a bit
and removes the project tree for a moment Fixed

2 1 Can't login without a github or google account Considering

5 1 Title box resize for new task Fixed

H1 1
For hi-res displays, tasks disappear off screen too soon (also for
small project trees) Fixed

9 2
Exception if login is canceled (MultiValueDictKeyError at
/callback/) In-Progress

H2,H5 3 invalid date range is allowed (start date after end date); Feb 31 Fixed

H3 1 Dragging too far can make it difficult to find the list again Considering

H4 3-4 New tasks either disappear or have a small canvas Fixed

H2 1 Not possible to modify layout lines/task box placement Considering

H1 1
When you're using different date format like dd.mm.yyyy, there is a
comma in front of the date Considering

H1 2
Sidebar is not expandable so you can't see your project's full
names Considering

1 1 Add task + not centered Fixed

2 1 Grabbing the name bar will let you drag it down for the entire page Intentional

10 2
A "help" button or more of a description/instructions of how
quayside works Considering

H3 2
GitHub sign in wants full read & write access to personal user data,
Google sign in only reads Investigating

H5 3

(More of a suggestion) Since dealing with user accounts,
something like this might be helpful for finding security
vulnerabilities if not already considered Appreciated

h5 3 sign-in w/ GitHub = error on FF Considering

11

http://dd.mm/
https://www.zaproxy.org/

H7 1 Keyboard shortcut -- Ctrl + Enter = Save for entering a new task? Considering

Table 1: Heuristic Review.

4.4 Testing Results

Toward the end of the semester we spent a considerable amount of time testing and running
through the general flow of this project’s final version of the app to ensure everything worked
properly. To further test the results one member of the team started using the app regularly.

5. Results

5.1 Final Application

Our project is currently live at quayside.app (also shown in Figure 8). See Appendix A for a user
manual for our application. We also have some blog-style documentation featured at
quayside-app.github.io/Wiki/ that talks about more architectural and up-front decisions we made.
For code specific documentation, our github repo contains a lot of valuable information. The
readme contains information about how to set up and run the web app locally, and in the program
files, all the functions contain a function block comment that explains each function.

Figure 8: Application Main Page.

12

https://quayside.app/
https://quayside-app.github.io/Wiki/#/QuaysideV1/
https://github.com/quayside-app/quayside

Overall, we fulfilled almost all the requirements we specified at the beginning of the semester.
The only exception to this was the “Chatting with ChatGPT” feature because towards the end of
the semester, before we started the chatting sprint, Erik Williams decided it would not add
enough value to the application at this time in proportion to the amount of time it would require.
It would also raise our ChatGPT API cost. Additionally, we implemented the front end of our
settings page but did not the backend as we were prioritizing more impactful features.

During our final Capstone Poster Presentation, we received lots of positive feedback for
quayside.app, with some people we interacted with telling us they would definitely use the web
application to manage their project. Additionally, we feel that we have developed quayside.app
enough so that we can start managing quayside.app with quayside.app (it is a bit meta). We mark
this as quite a big milestone.

5.2 Contribution Breakdown

Contribution was split up by feature as follows:
● Cloud hosting. - Cam 100%
● Oath Sign in. - Cam 100%
● Getting-started screen that the user can view without logging in. - Cam 70%, Mya 30%
● REST API that can be accessible separate from the web application. - Mya 70%, Kai

30%
● API Authentication and Authorization with API Key. - Mya 100%
● Task generation with ChatGPT. - Mya 70%, Kai 30%
● Project Data Editing (Name, Date). - Mya 100%
● Task Editing (Name, Description, Date, Status). - Mya 100%
● Project Graph manipulation. - Mya 100%
● Kanban Board Frontend. - Cam 100%
● Kanban Board Backend. - Kai 100%
● Sharing via email. - Mya 100%
● Settings page Frontend. - Kai 100%
● Documentation with in-code comments/readme files and a GitHub wiki. - Mya 33%,

Cam 33%, Kai 33%

Specific file contributions can be viewed in our Github repository, using the “git blame” feature.
Additionally, Figure 9 shows Github contributions over the course of the semester (Mya is
“schromya”, Cam is “CRD907”, and Kai is “kaiverson”).

13

https://github.com/quayside-app/quayside

Figure 8: Github Contributions.

5.3 Next Steps

There are many new features we want to implement to add on to quayside.app. These include
accurate task duration estimation, integration with google/github to track tasks, and email/text
notifications to keep users on track with their tasks.

6. Conclusions and Lessons Learned

The idea for quayside.app was created in the summer of 2023. In the fall of 2023, a group of
computer science students brought quayside.app to life using next.js. In the Spring of 2024, we
refactored quayside.app in python and built upon the lessons learned from those who worked on
it before us. We are proud of our creation and the experience it provides users. The project
generator gives valuable insight into projects and the tree and kanban visualizations do a great
job of keeping track of everything. That being said, here are some of the biggest lessons we
learned.

All of us, in hindsight, think that it was a questionable decision for us to use mongoDB, a noSQL
database, for our Django framework backend. Django comes with many pre-made tables and
functions that are only compatible with SQL databases. We had to put a lot of effort into

14

mongoDB to work at all. A big lesson we learned is to cooperate with your framework. Though
noSQL has its advantages, it was not worth the trouble.

As for personal things that we learned-
Mya says: I learned a lot about authentication and authorization.
Cam says: I learned a lot about frontend development and web page styling.
Kai says: I gained a lot of experience documenting code and using good practices.

Going into the future, we hope that the lessons we learned help the next group of developers
create an even better version of quayside.app .

7. References

PMI. 2024.
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pmi-pulse-o
f-the-profession-2024-report.pdf?rev=8d24f62b2b044e00ae21e0388ea9c8bf

Williams, Erik. Summer 2023 quayside.app presentation graphic.

Note: Our Github Repository is featured at https://github.com/quayside-app/quayside

15

https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pmi-pulse-of-the-profession-2024-report.pdf?rev=8d24f62b2b044e00ae21e0388ea9c8bf
https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pmi-pulse-of-the-profession-2024-report.pdf?rev=8d24f62b2b044e00ae21e0388ea9c8bf
https://github.com/quayside-app/quayside

Appendix A: User Manual

1. Go to https://quayside.app/ on a desktop or mobile device.
2. Sign in with Github or Google.
3. Click the “+ Project” button and enter a project name and description to generate a

project. You should be brought to your generated project in a few seconds.
4. Edit tasks by clicking on them in a tree. Add new tasks by clicking the “+” icon.
5. View your tasks on a kanban board by clicking the “kanban” icon the project bar. Update

the status of your tasks by dragging them to different boards.
6. Edit your project or share it with collaborators by clicking the edit project icon in the

project bar.

16

https://quayside.app/

