
1

UAANAV: A HoloLens 2 Guided Tour
Experience
Final Project Report

Ashton Curry & Rane Murphy
05/02/2024

2

Table of Contents

Abstract.. 3
1. Introduction.. 3
2. Description of the planning process..4

2.1 Phase 1: Initial Concept Development..4
2,2 Phase 2: Research... 4
2.3 Phase 3: Scenario Development.. 5
2.4 Phase 4: Defining Requirements.. 5
2.5 Phase 5: Prototypes and Testing.. 5
2.6 Phase 6: Future Development.. 5

3. Requirements... 6
3.1 Functional Specifications.. 6
3.2 Non-Functional Specifications.. 6
3.3 System Specifications...7
3.4 User Specifications... 7

4. Description of Design..7
4.1 UI.. 7
4.2 Data Structures...8
4.3 Architecture...9
4.4 Algorithms...12

5. Software Development Process... 13
5.1 Testing and Debugging... 13
5.2 Planned vs Actual Work Schedule..14
5.3 Additional Challenges... 14

6. Results.. 14
6.1 Final Product...15
6.2 Future Work.. 17

7. Conclusions and Lessons Learned... 17
8. References..18

Appendix A: Heuristic Evaluation Table.. 18
Appendix B: User/Developer Manual..21

Requirements.. 21
Setting Location...21
Finding Nodes... 22
Creating New Locations.. 22
Placing New Nodes... 22
Adjusting Points of Interest..24
Interacting With Microsoft Azure..24
Exiting..25
Additional Resources...25
Developer Additional Requirements.. 25

3

Abstract
This project focused on creating a navigational application for the Microsoft HoloLens
2 mixed reality headset. By integrating augmented reality, users can interact with a
blend of holograms and the real world. Designed primarily for new or prospective
students and staff, the application serves as an interactive guide to the University of
Alaska Anchorage (UAA) campus and a promotional use case for the Alaska Data
Science and Artificial Intelligence Lab at UAA. It offers a dynamic and educational
method to discover the campus while providing insights into the history and culture of
UAA's notable points of interest. The holograms form a trail, resembling breadcrumbs,
with interactive elements such as photos and games. Additionally, the application
includes a map creation mode, enabling future developers to enhance the tour
experience by designing their own maps and adding new points of interest.

1. Introduction
Wayfinding is used in our daily lives to get from one place to another. Applications like
google maps allows people to plot routes among many roads and trails. These apps
are highly effective in getting people where they need to go, oftentimes finding the
most efficient and shortest route. However, these applications rely on typical GPS
positioning for localization which is poorly adapted for indoor use due to the
complexity of indoor spaces combined with weaker GPS signaling while indoors[1].
Therefore, a new approach must be taken to effectively guide people in indoor spaces.

There are a few other problems that are proposed by the clients that this software was
built for. The University of Alaska Anchorage (UAA) and the Alaska Data Science and
Artificial Intelligence Lab (ADSAIL) are beneficiaries for the software that was built.
ADSAIL is a small lab on the UAA campus that many students do not know exist. The
software created is aimed at promoting the lab and its potential for others to develop
and create using the technologies the lab gives access to. Additionally, the software
targets UAA to provide campus tours or guidance around the campus to new or
prospective students and other visitors.

The ADSAIL lab contains three Augmented Reality devices developed by Microsoft
called the HoloLens 2. Previous research has shown that the HoloLens 2 can be an
effective device to develop applications for wayfinding [2]. The features of the
HoloLens 2 includes sensors and spatial mapping abilities that aid in developing
wayfinding applications. An existing service from Azure called Azure Spatial Anchors
(ASA) can be used to create virtual markers, where game objects such as a

4

navigation node, pictures, and even games can be placed and interacted with on the
referenced ASA.

To provide a solution to the problems of wayfinding, promoting ADSAIL, and guided
UAA tours, this project aimed at creating a HoloLens 2 navigation application that
provided engaging, interactive, and educational content. The application's working title
is UAANAV: A HoloLens 2 Guided Tour Experience. The application has two modes: a
tour mode and a map creation mode. In combination, they allow for maps with any
desired content to be created by tour designers and experienced by interested parties.

2. Description of the planning process
The planning for the UAANAV application was spread across six phases. Each phase
was a stepping stone onto the next phase, iterating through phase development as the
application was built. There were times where a phase was revisited, such as
research, to help incorporate later phases of the process.

2.1 Phase 1: Initial Concept Development
The first phase involved brainstorming sessions where a UML diagram was created to
help visualize all the pieces that would be put into the UAANAV application. The
concept of how the application would work was also workshopped during this phase.
There were discussions about making a treasure hunt type application at first. This
evolved into a tour guide application after defining what the client would practically use
the application for.

In addition to brainstorming what the application would do, the objectives of the project
were also defined during the first phase. Because the client chosen was UAA and
ADSAIL, it was decided that the application would promote ADSAIL and provide UAA
with campus navigation in an educational, interactive, and engaging tour for
prospective students and visitors of the campus.

2,2 Phase 2: Research
After defining what the application would look like and the objectives the application
would accomplish, the next phase was to research how to implement the project. This
involved looking up other similar wayfinding projects using the HoloLens 2 device, in
order to better understand if it was possible to implement and take inspiration from
other projects. Then the tools of the project were researched. This involved working
through official tutorials for the use of the HoloLens 2 device, reading documentation,

5

and going through tutorials for the game engine and to set up the software
development kits for the project libraries. This phase was revisited throughout the
project, as it was required when deciding how to implement each requirement.

2.3 Phase 3: Scenario Development
Scenarios were developed for the tour application. This is where it was decided how a
user would walk through the tour, and how they would interact with the hologram
elements. Scenarios included a new student walking through a building they have
never visited before, or a visitor that has walked through the building but is interested
in particular exhibits inside the building, like the various projects displayed throughout
the campus or points of interest like the hockey rink and basketball court. This
scenario building provided information on what requirements the application needed to
successfully allow the user to navigate, learn, and interact with the application.

2.4 Phase 4: Defining Requirements
The first three phases provided the information needed to define the requirements of
the application. This is where functional requirements such as points of interest that
are dynamically able to change between types of nodes were conceptualized. Another
consideration made was to split the application into two modes: a touring mode and a
map creation mode. The two modes provided the means to tackle functional,
non-functional, system, and user requirements.

2.5 Phase 5: Prototypes and Testing
Throughout the implementation of the application, many tests and prototypes were
created. The development usually started with adding an additional feature or
updating a feature, uploading it to the HoloLens 2, then using the device to work with
the feature and decide if any changes needed to be made. This phase often required
going back to the research phase and requirements phase to rework the application.

2.6 Phase 6: Future Development
After the application was in its final iterations, there were considerations for its future.
Additional features of the application were defined, current features that need
improvement were highlighted, and a developer manual was created. The hope is that
future developers can further enhance the application and implement many more tour
maps of campus with the tools this project leaves behind.

6

3. Requirements
Because the project was not mentored and there wasn’t a client to report to, we acted
as our own clients, coming up with specifications to add or consider as the project was
built. The Requirements can be divided into 4 sections: functional, non-functional,
system, and user.

3.1 Functional Specifications
The application has two core functionalities. A navigation component, and a point of
interest component. The navigation component consists of the ability to direct a user
towards a waypoint or point of interest, with the ability to update the user's location in
real-time or through button interaction. The points of interest component provides
location based objects that a user can interact with. These points of interest can
display photos, games, and other content anywhere along the navigation route. An
important function is that points of interest and waypoints can be dynamically changed
to any content the tour creator wants it to be, allowing the tour to have a point of
interest swap between any type of media deemed appropriate.

User interaction is another functional requirement. The user can interact with buttons
at points of interest to change the hologram or to move on to the next waypoint or
point of interest. The user can also play games at points of interest that might require
eye movement or hand interaction.

3.2 Non-Functional Specifications
Some non-functional specifications are also important. One aspect is the loading of
the map, which must load in about 5 to 10 seconds to give a fast response for the
user. Additionally, the response from interacting with hologram objects needs to be
near instantaneous so the user feels like their actions have done something. Usability
is also important, which is that the design of the tour is easy to navigate, and the
content is intuitive to interact with in the augmented environment. The reliability of the
HoloLens 2 also needs to be able to run the application for the duration of the tour
which is dependent on the battery life of the headset.

The HoloLens 2 application also needs to scale well, which is easy enough to just
download the application on multiple devices. The only consideration is the querying
of the database when creating the map, but this should be fine since it isn’t a big
dataset for any one map. Finally, there is compatibility. The application needs to work
on future firmware updates to both the hololens 2 application and the development
environment for the software maintenance.

7

3.3 System Specifications
There are four hardware specifications to take into consideration:

● Hardware
● Software
● Network
● Database

The hardware needed for the application is the HoloLens 2 itself. The software
required includes the operating system that the HoloLens 2 runs on and the
development environment that the UAANAV application uses, which is Unity.
Additionally, the third party libraries that are used for the software are the Azure
software development kit and the Mixed Reality ToolKit. A network connection is
needed to run the application so that positional data can be retrieved from the cloud
database that is used. The database consists of Azure Spatial Anchors (ASA) and
Azure Table Storage (ATS). This is to store and retrieve the spatial information for the
game objects in the map.

3.4 User Specifications
Users are required to have the ability to operate the HoloLens 2. Some training and
calibration are required before a user might feel comfortable in the augmented reality
environment. Technical proficiency is needed to use the headset effectively. The user
also needs the physical abilities to interact with the holograms. They will need to have
hands and be able to make gestures with their hands. They will also need the ability to
see and move their eyes for eye gazing interactions.

4. Description of Design

4.1 UI
The application made heavy use of premade UI elements provided by the MRTK.
These were mostly used on the developer end, but the slate in Figure 1 was also
featured in the games, and buttons were employed at many POIs for engagement or
advancement. More than simply accelerating development, it was a practical necessity
as they have been optimized to handle events and visual display much more efficiently
than if we implemented the features ourselves. Furthermore, using the traditional Unity
UI canvas standalone was not an option as it did not appear on the Hololens at all.

8

Figure 1: Simple slate UI developed by MRTK

Besides slates and buttons there were other UI features and functionalities used
throughout. Text was used to provide instructions to users and developers or as labels
for button functionality. For this purpose Unity’s built-in TextMeshPro was used for its
flexible display options and easy to use interface. More subtle UI implementations
were in the form of event handling triggered through button presses. Unity makes this
process trivial to work with through drag and drop functionality. All game object
behavioral changes and public function calls can be linked to these events in the
editor.

4.2 Data Structures
The central data structure spanning all aspects of the application is the PageManager.
It takes the cloud-originating information from the Azure databases and, combined
with developer inputs, gives form in the real world that users can observe and interact
with. As depicted in Figure 2, this single point of contact stores all dynamic information
related to the function and appearance of each POI. It incorporates a developer
interface that allows effortless drag and drop functionality and data input with minimal
training required. From this interface, users can select POI type, any number of
images to cycle through, and the next POI that it should direct the user to.

9

Figure 2: PageManager setup

Figure 3 represents an abstraction of a sample tour that can be developed. In this
view it can be seen that the tour is effectively traversing a linked list with connection
“breadcrumbs” and various POIs that bridge the start and end nodes. In the case that
the end is chosen to lead back to the start, a circular linked list is created.

FIgure 3: Abstract tour node design

4.3 Architecture
There are two modes for our application: the tour mode and the map creation mode.
The overall system architecture for the tour mode is represented in Figure 4. The tools
that were used to create the application were Unity for the game engine, MRTK which
is the UI library provided by Microsoft, and the Azure Software Development Kit for

10

interacting with the Azure Spatial Anchor (ASA) service and the Azure Table Storage
(ATS) service.

Figure 4: Tour mode architecture

The user starts the tour process by interacting with the MRTK developed UI, as seen
in Figure 5. A map location is selected from a list of created maps, which are named
after the building that the tour takes place in. The program then queries the ATS for
spatial anchors, which are passed to the ASA cloud for the locations of the points of
interest. The ATS is then used again to create game objects though the PageManager
data structure at the various points of interest. The user is then able to walk to points
of interest and engage with the UI there to either display different information, play a
game, or move on to the next point of interest in the tour.

Figure 5: Map location selector

The architecture for the map creation mode involves the PageManager. The data
structure as described earlier is used to insert data for game objects at the points of

11

interest along the tour. It is largely a plug and play system for developers, and allows
for the creation of many maps with any number of nodes. After the map is created, it
will be added to the list for the map locations. Figure 6 below shows the UI for
configuring the tour locations.

Figure 6: Map creation UI

The two cloud components, ASA and ATS, were represented as databases. The ASA
service is its own managed database, of which there was only a need to know the
spatial anchor id to reference it. The rest of the database attributes are used for spatial
localization. The ATS database was needed to persist anchors across sessions and
we designed it. Table 1 shows the structure of the database table, which is named
‘objects’ in the cloud service. Each entry in the table is a spatial anchor, which can be
represented uniquely by its ID. Then, we used the mapName field to identify which
map the spatial anchor belongs to, and a name field to associate a unique spatial
anchor with a game object. This also allows people to name their points of interest for
reference later when adding game objects to the PageManager.

Spatial anchor ID name mapName

Abcd1234 EIB0 EIB

dcba4321 EIB1 EIB
Table 1: Azure Table Storage database representation

12

4.4 Algorithms

Our project only consisted of two main algorithms, with most of the project being UI
and interactive experiences. The first algorithm involves the Azure cloud to move
around spatial anchor data. The second algorithm is directed at the chevron arrow
guide for users to follow to waypoints on the tour.

We can visualize the algorithm for the spatial anchor data in Figure 7. The holoLens 2
will load up our application, then when the user wants to create a map they use the
ASA service to get the location data. The spatial anchor that is created is then
uploaded to the ATS service after the user saves the information for the map the
anchor is part of, the location name, and the spatial anchor ID is automatically placed.
The more important and complex part of the algorithm is getting that data and using to
load game objects, this is a step-by-step representation of this part of the algorithm:

1. User selects ‘load-all’ for the map they have chosen
2. The HoloLens 2 queries the ATS for all the spatial anchor IDs with the specific

mapName attribute that was chosen by the user.
3. The spatial anchor IDs are then saved into a list, as well as their names.
4. The spatial anchor ID list is used by the application to query for the location

information held by the ASA service
5. The location information and the spatial anchor name is then used by the

PageManager to create game objects in the real world

Figure 7: Abstract cloud algorithm to get spatial anchors

The last algorithm is implemented for wayfinding between points of interest using an
arrow/chevron. This algorithm is activated when the ‘Advance’ button on a point of
interest is touched, which triggers a query to the PageManager to lookup the next
point of interest or waypoint which is saved within the data attributes for the current
node by using the name field of the anchor. The query checks against all active

13

anchors and passes the location of the next node to the arrow/chevron object, which
then uses the MRTK library to point the arrow towards the next game object on the
list.

5. Software Development Process

Most of the development process occurred in bursts of productivity with dormant
periods of research in between. The process generally worked as follows: uncover a
new resource that proposed a manner to implement what we wanted, exhaust all
considered pathways with that resource, hit a dead end most of the time, and do more
research. After multiple iterations we eventually had enough pieces that worked to
have a functional MVP.

5.1 Testing and Debugging

Testing and debugging were both much more complicated than other projects in our
experience for multiple reasons. Time required is on the forefront of reasons as every
part of the process takes a long time. Setting up the environment is a time consuming
and grueling process that must be done for every computer that works on the project.
Then the process of building the project in Unity and deploying to the Hololens
requires around 5 minutes on the lower end with Rane’s computer requiring closer to
20. And that rebuilding and deploying must be done for every change ranging from a
brand new feature to changing a mistaken flag from false to true.

Another problem we encountered was when using in-editor testing. There is an
advanced emulator that can be used but requires Windows 11. This was not an option
for Rane and was not used at all in lieu of MRTK emulation tools. In-editor testing is
much faster with these MRTK tools than a full deployment but cannot capture the
experience accurately. The sense of spatial scale is skewed and the most important
features we care about such as querying the cloud and loading holograms cannot be
performed. Furthermore, we learned that traditional standalone UI elements are not
functional in the Hololens and must be nested in other objects instead.

The tests typically ran as follows:
● Deploy a new feature or multiple if they did not have the same dependencies
● Interact with UI elements noting responsiveness and appearance along the way

to new feature
● Test new feature(s) while making note of ease of use and spatial position
● After typical unsuccessful trial theorize where the process went wrong

14

● After trying multiple theories return to problem from a different angle
● Make many tiny visual adjustments with each test

5.2 Planned vs Actual Work Schedule
The original plan outlined in our design document identified nice, clean time tables for
each phase of the project. Naturally there is going to be overlap to phases and that
was identified in our original Gantt chart, but it was clear, for example, that
implementation should be completed by the end of March. It is not a surprise to most
people with experience working on bigger projects that things don’t always go
according to plan, but we were surprised by how far development deviated from
schedule.

Research, implementation, and testing all extended to the very last week. The design
phase also went longer than projected as our understanding of what was possible
developed, but we generally had the core concept identified relatively early on.
Essentially we built it as we flew it as the saying goes. This was a natural and
inevitable reality as there were many interconnected parts to the project that we had to
learn about with each of us having experience in the different areas but not quite the
whole picture. Each time we broke through a new barrier with research we
reevaluated the best way forward and how to deliver the best product possible in the
end.

5.3 Additional Challenges
AR is not a new technology but wearable AR has not yet reached a critical mass of
users. Economics plays a huge role in this. The Hololens is thousands of dollars which
makes it infeasible for the typical hobbyist developer to use. Since it is so expensive
and has little application outside industry or other niche areas it has not been widely
adopted by consumers. This leads to less product support and documentation than
would be available for a flourishing device. Throughout the development cycle we
were hard pressed to find up-to-date documentation or tutorials that explained how a
particular feature worked or could be used. This led to countless hours of research
wasted on deprecated experimental features or other dead ends. Our hope is that we
can save future developers from this pain with the provided resources.

6. Results
The UAANAV application finished with our initial goal: a minimum viable product that
can guide users on a tour through points of interest in a map. There were no direct
clients of our project, so we made our own goals and felt good about what we

15

achieved with the requirements set for our program. We believe that the project
demonstrates both the map creation and the tour mode application to the point of
proving the concept that indoor navigation with the HoloLens 2 is both feasible and
scalable. Most of the requirements were met with the final product, while some can be
developed further.

6.1 Final Product
There are several figures to represent the core of our program. Starting with the map
creation, a user can create and manage maps through the PageManager, as shown in
Figure 8, inspector window found within the inspector interface on Unity. This is
currently the only way to create new maps and dynamically update various nodes that
are located on the map.

Figure 8: Page manager for creating and managing maps

After creating a new map, users can update the map with spatial anchors by opening
the application on the HoloLens 2, choosing the map name that they created, and start
placing down the nodes in the location they want the points of interest or connecting
nodes to be at. Then, the user can come back to the page manager and attach objects
to the new nodes that were created and add content. This will then be loaded into the
map during the tour phase.

After the map is created and node types are established, the application can go into
tour mode. Figure 9 depicts some of the P.O.I’s that are possible to see along the tour,
which includes games, pictures, or slideshows users can interact with.

16

Figure 10: Different types of Points Of Interest

We also wanted to create games that leverage the technology of the HoloLens 2, in
particular the eye gaze feature and the hand interaction feature. To do this, we created
an eye gaze game where the user must look at various rings and wait for the seawolf
to grow to the size of the ring to showcase the concept that the application can sense
eye direction and interact with hologram objects in relation to eye movement. The
game can be seen in Figure 11. Additionally, there is a tile puzzle game where a user
has to tap on tiles to solve the picture puzzle, which demonstrates the hand
interactivity with hologram objects. Figure 12 is a snapshot of the game in action.

Figure 11: Eye gaze ring game

17

Figure 12: Tile game for hand interaction demonstration

6.2 Future Work
The application turned out well given the complexity of putting together the cloud
components, the MRTK library, and the Unity game engine. We hope that other
developers will further add to our project, as many things can be improved upon. One
such idea is to implement the map creation process into a user interface and intuitive
process that someone can do through the HoloLens 2 application instead of how it
works now through the Unity game engine.

The PageManager can also be updated. It currently is organized well, but adding
different points of interest, such as video, text boxes, and audio could be implemented
so that users can have more diverse experiences. The organization for game objects
also could be improved on here, where a file system or a cloud storage database
needs to be designed and implemented. In combination with working on the
PageManager, the chevron/Arrow indicator can be updated to use the data structure
to guide a user through the tour experience. It currently is not user friendly, and only
directs users to the next node if the ‘Advance’ button on a point of interest is pressed.

The UI also could use a lot of work. The current implementation of holograms, menus,
buttons, and guiding arrows are all basic and supposed to represent the proof of
concept. We found that UI is the most important aspect of our project, since that is
what users interact with and follow. A clear tutorial on how to go through the tour is
also needed, and a way to train users quickly before using the HoloLens 2 device
since features like pinch click are not known unless we tell the user.

7. Conclusions and Lessons Learned
UAANAV was created using Unity, the MRTK library, and the ASA and ATS cloud
services. The objective of our application was to provide a working proof of concept for
using the HoloLens 2 as a tour guide application for new and prospective students at

18

UAA and to promote ADSAIL and its potential for the developer community. We felt
that our application met the requirements we set out to achieve, with a lot of room for
improvement and modification for future development.

The project was very challenging. It involved lots of research into Azure, the MRTK
library documentation, official Unity tutorials for using the game engine, and official
Microsoft tutorials on developing applications using the HoloLens 2 and spatial
anchors. This project would not have been as developed if it weren’t for the fact that a
team member had years of Unity game development experience before starting. The
HoloLens 2 and MRTK library had outdated and sparse documentation to help guide
us to our goals, leaving us with having to lean on open source projects with the same
ideas. With that being said, the experience gained from designing, implementing, and
iterating through phases of development were worthwhile and ended in efforts that we
feel proud of and can be used in a practical setting with future contributions and
tweaks.

One thing that we would change is having a lot more time dedicated to user testing
and unit testing. Our implementation of the project took a lot longer than anticipated,
and left us using time dedicated to play testing on developing our project. When we
presented the project to an audience, it was clear that the UI and game elements
would need to be modified to make a more intuitive and fun experience. Because of
this, we recommend that those who work on this project in the future work with people
unfamiliar with the HoloLens 2 while developing features to get a better feel for what
the application needs in terms of UI and functionality.

8. References
[1] G. Dedes and A. G. Dempster, “Indoor gps positioning-challenges and

opportunities,” in VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology
Conference, 2005., vol. 1. Citeseer, 2005, pp. 412–415.

[2] Brunnnner, X., Schalbetter, L., & Wu, T. (2020). HoloNav: A mixed reality indoor
navigation system.

Appendix A: Heuristic Evaluation Table

Heuristic
Issue
(1-10)

Severity
(1-4) Description of Problem Source

(person) Action Taken

19

H8 1
allow tap with finger,
not knuckle; better
sensitivity

Cam
This was not directly implemented, it is
a feature of the HoloLens 2. Can't
directly influence touching .

H8 1
too long to wait for
the seawolf logo to
expand

Jaren
Created variable that allows developer
to change speed at which logo
expands

H1 2 text & icons seemed
a bit small Mya Not implemented.

H3 4 pop up seemed jittery Kai Only in video, not implemented.

H4 1 text is sometimes
squished EleonoraOnly in video, not implemented.

H8 2
arrow said turn left,
but you walked
straight

Connor Arrow needs work, but not
implemented

H2 2 depth to button
seems off Mary This is only apparent in video, not in

actual use. Not implemented

H1 2
feedback so you
know where your line
of sight is

Robert

We thought about this, but one feature
of the holoLens is that it automatically
tracks your eye gaze. It would be hard
to create a dynamic reticle that showed
where the holoLens would think you
are looking at and also extremely
distracting. Not implemented

H4 1

document panel says
engage and
advance;
non-standard menu
names

Garrett
This wasn't implemented, but it's
recognized this should change with
future iterations.

H3 2 button pressing
difficult Antonio

The buttons are easily pressable in
person, so not implemented or already
resolved.

20

H8 1 poor image quality,
e.g. wolf and posters Anthony This is only true in the video, muchbetter while using HoloLens

H8 2 add zoom option for
images Hiromi Can dynamically change image

resolution in pageManger

Q
Do the activities
scale with user
height? (A = yes)

Quinton Implemented.

H5 1 add height max to
avoid straining necks Quinton The game has field of view parameters

that can be changed.

H2 3 needed some
instructions for users Witmer User Manual Implemented.

H3 2 requires calibration
for each person Cam No way to change this. Not

Implemented

H4 2-3 remove HoloLens
open menu icon Robert Implemented. Added a finished

mapping button to remove menu

H8 1 animate/smooth
menu box opening Connor Not implemented.

H8 2-3
floating
icons/chevrons
visible through walls

Cam Can't change this. Not implemented.

H1 2

Better readability on
buttons, different
button with less
shadowing so text is
clearer

Mika Not implemented.

H4 2

"Engage" seems to
mean different things
at different stations --
better name for this
button?

Witmer Not implemented. But recognized thisneeds to change in future iterations

21

Appendix B: User/Developer Manual

Requirements
Users will need to have access to ADSAIL located on the third floor of the Rasmuson
Hall building at UAA. They will need access to the lab or have a lab tech come in and
give them access to the device. There are three HoloLens 2 devices there that already
have the application installed on them:

There are paper manuals on how to operate the HoloLens 2 next to the devices
themselves which gives users the credentials to use the ADSAIL Microsoft account.
Users will also require access to a Microsoft Azure account. Developers have
additional requirements listed at the end of this section.

Setting Location
To start the app, navigate to the apps section of the microsoft menu while wearing the
HoloLens 2. Select ‘_Capstone-UAA-NAV’ app, it should be the first app in the list.
After, the program will launch and bring you to the map selection screen:

You can use your hands to tap or pinch on the dropdown arrow to see a list of maps
already created. To later display holograms and if you’re in the ADSAIL lab, select the
ADSAIL3 map. Once the map is selected, use your hands to tap or pinch tap the ‘set
location’ button. This will bring up the object finder menu:

22

Finding Nodes
If you want to display the nodes in ADSAIL, tap/pinch the ‘Search All’ icon. Once you
tap it, look around the room carefully and wait 5 - 10 seconds. The anchors should
load and the game objects will too. If not, try to tap the ‘Search All’ Icon again. You
can remove the menu by clicking ‘Finish Setup’ but will not be able to pull it back up
without restarting the application.

Once you load up holograms you can interact with the blue square mesh buttons for
the game objects to work. Right now, in ADSAIL3, there should be a picture object, a
tilegame object, and a slideshow. Play around with them to get a feel for the
application!

Creating New Locations
To add new map locations, in the editor hierarchy navigate to SelectLocation >
Canvas > LocationSelection and go to the “Dropdown - TextMeshPro” component.
Under “Options” click the plus button and enter the name of the new map location in
the newly created space. Then navigate to the PageManager in the hierarchy and go
to the “Page Manager (Script)” component. Under “Locations” click the plus button,
expand the newly created entry, and enter the same new map location name. This
name is stored as a string for comparison purposes so they must appear exactly the
same in both places and is not restricted from using special characters.

Placing New Nodes
If you want to set up new points of interest or nodes, you can tap/pinch the ‘Set
Object’ icon which will bring you to a object setting menu:

23

You can enter the name of your object here by tapping/pinching the text box, this will
pull up a hologram keyboard to type in. For simplicity and reference, the application is
built using a number system 0-(n-1) where n is the number of points you want on the
map. After you set the name, hit enter on the keyboard. Then tap/pinch the ‘Set
Object’ icon. This will pull up the object menu:

To set the point, tap/pinch the ‘Save Location’ Icon which will generate a blue sphere
mesh to visualize the location of your point of interest. Tap/pinch to set the ball, it will
turn into a cube and ask if you want to save the location, if you want to continue to
move it to another location, select ‘No’, else you can select yes and set new spatial
anchors up. After adding new nodes to a map location update the PageManager
accordingly to reflect them. To do so, navigate to the PageManager in the hierarchy
and go to the “Page Manager (Script)” component. Under “Locations” expand the map

24

location that you added the nodes to. Change the “Points Of Interest” value to reflect
the new number of nodes (using 0-(n-1) naming convention).

Adjusting Points of Interest
If you want to change node types or their features navigate to the PageManager in the
hierarchy and go to the “Page Manager (Script)” component. Under “Locations”
expand the map location you want to make the changes on. Each element in this list
correlates directly to nodes in the selected location. For example, “Element 2” in the
list addresses the point of interest named “2”. If a mistake is made and a number is
skipped when creating nodes, the slot that would have been used must still be
occupied in the list but will be ignored.

Expand the element you wish to make changes on and choose the node type from the
dropdown. Enter a value into “Nextpoint Number” that the node will direct users to
when using the “Advance” button (has no effect on “NULL” or “CONNECTING”
nodes). If the node type is set to “IMAGE” one or more sprites may be loaded under
“Node Sprites” and “Vertical Offset” may be used to adjust the image heights. The
“Engage” button will be enabled automatically if there is more than one image
supplied. Game selections will not be affected by sprite input as they have their own
already.

Interacting With Microsoft Azure
The application relies on Azure Spatial Anchors and Azure Storage Table so a
Microsoft Azure account is required. Follow the referenced tutorial to get a new
account set up if one is not supplied. The account information is required in two
locations in the editor hierarchy: DataManager > Data Manager (script) and
AnchorManager > Spatial Anchor Manager (Script). The tutorial should be able to
provide the details of where to find the relevant information in your account.

Saved table information for points of interest can be modified if need be. This may be
useful if a naming mistake is made or for renaming a location. In either case keep in
mind the name reflected in the table is a concatenation of the map location and the
individual node name and must reflect accordingly. For example the point of interest
located at EIB with the given name “2” is internally stored as “EIB2” and must be in the
Azure Table Storage.

To modify table information directly, log in to the Microsoft Azure Portal and select the
storage account resource linked to the application. Select “Storage browser” then
“Tables” then “objects”. The table for all points of interest in the application will be
displayed. Each entry can be right-clicked to edit or delete. Not all attributes can be

25

modified such as “RowKey”. “RowKey” reflects the original name given to each node
and will be different from the “Name” attribute if it has been modified after creation.
This does not present a problem unless you wish to create a new node that will
conflict with the pre-existing key in which case it will have to be deleted. The only
attributes currently used in the application are “MapName”, “Name”, and
“SpatialAnchorId”. Of these, only “MapName” and “Name” should ever need to be
modified if at all.

Exiting
If you want to exit the application, hold up your right wrist in front of your eyes, and a
Microsoft Windows icon should appear. Tap it, and the Microsoft Windows menu
should pop up. Tap the Home icon at the bottom of the menu to exit the application.

Additional Resources

Unity Learn: Unity Learn

Azure Spatial Anchors Tutorial: Azure Spatial Anchors tutorial

HoloLens 2 Development Tutorial for environment setup, MRTK toolkit, and the
Azure SDK for spatial anchors and table storage with Unity: Tutorial

MRTK documentation: MRTK Docs

Azure documentation: Azure docs

Github: Capstone Github

Developer Additional Requirements
A solid foundation in Unity is a must to further develop this project. At a minimum,
prospective developers should have completed or have experience equivalent to
“Unity Essentials” and most of “Junior Programmer” (complete up to Unit 5) from Unity
Learn to be able to effectively engage with and enhance the application. These two
pathways together are slated for 14 weeks to complete and does not account for the
additional learning required of the other project components.

https://learn.unity.com/
https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/spatial-anchors/tutorials/tutorial-new-unity-hololens-app.md
https://learn.microsoft.com/en-us/training/paths/beginner-hololens-2-tutorials/
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk3-overview/
https://learn.microsoft.com/en-us/azure/?product=popular
https://github.com/AKashton/Capstone-Project

