
Abound
CSCE A470 Capstone

,Anthony van Weel Antonio Pennell

5/2/2024

mailto:avanweel@alaska.edu
mailto:apennell2@alaska.edu

1

Acknowledgements
We would like to acknowledge Dr. Kenrick Mock for mentoring us throughout making

Abound, Andrew Tyler for making the font used in the game, Patrick de Arteaga for making the
music, and our family and friends for play testing.

2

Abstract
Abound aims to be a 2D sandbox role-playing game inspired by the niche game

Starbound. What you see are the beginnings of a years-long endeavor to learn from the
successes and failures of Starbound and build a game that achieves the goals it ultimately failed
to meet. For the course of this project however, Abound is a simple 2D sandbox game created
with a custom game engine.

3

Table of Contents

Introduction..5
Requirements...6

Implemented.. 6
Not Implemented... 7

Design...8
Architecture..8
Rendering Pipeline.. 8

Shaders..8
Sprite Rendering..9
Text Rendering...9

Context Handling... 10
Input Handling..10
World..11
World Generation... 11
Physics.. 14

Software Development Process...15
Planning...15
Testing... 15

Conclusion... 17
Results...17
Discussion... 17

References... 18
User Manual... 19

User Interface.. 19
Main Menu... 19
Pause Menu...20
Settings Menu..20
Audio Settings..21
Hotbar.. 21

Gameplay.. 22
Movement.. 22
World Interaction..23

Pickaxe.. 23
Blocks.. 23

Heuristic Evaluation.. 24
Code Contributions... 26

4

Introduction
Abound is a 2D side scrolling sandbox game where the player controls a player

character and can create and destroy the procedurally generated terrain in order to create their
own custom structures and landscape. The goal of this project is to create a 2D sandbox game
with a custom game engine. As such it is built upon Open Graphics Library (OpenGL), Simple
DirectMedia Layer 2 (SDL2), FastNoise2, and FreeType. These libraries combined provide the
starting point for creating a custom game engine.

5

Requirements

Figure 1. This graph outlines the requirements and in what order they should get done
in. This also served to help keep track of all progress made.

Initially, Abound’s requirements were split into two sections, a required and a stretch goal
section. However, due to the lack of time the entire stretch goal section was dropped with the
exception of implementing parallax.

Implemented
- A graphics engine was implemented to allow rendering images to take place.

- The world, perhaps one of the most vital features of the game, due to the entirety of the
game play taking place here.

6

- Wrap around worlds, while not common in sandbox games this was one feature we
wanted to add to make the world feel more like something you could fully explore.

- Procedural generation, the initial plan was for each world to be different, but due to lack
of development time, we decided to hard code the world seed so only one world is
generated. The reason for this is that sometimes the player would spawn in rock which
caused undesirable movement at the start.

- Fully destructible terrain was implemented to allow the player to edit the world using the
blocks in their hotbar.

- Physics allows the player to traverse and be limited by the terrain.

- Player character makes it so that the player must take into consideration the player size
when building, leading to the development of more consistent structures.

- Menus were implemented as they are present in nearly every video game created
allowing us to implement a credits screen, along with options to customize the player’s
experience.

- An audio system was implemented to make the game more immersive by playing
ambient music.

Not Implemented
- The lighting system, while initially planned and prototyped, was determined to be too

time consuming to implement before the deadline.

- Character selection was unable to be implemented due to the menus taking longer than
expected to implement.

- World selection was unable to be implemented due to the menus taking longer than
expected to implement.

7

Design

Architecture
The architecture for Abound uses a monolithic architecture commonly found in games.

There is a central game class that has the audio system, rendering engine, and input handler
singletons declared within it. We decided early on that each object would adhere to the
principles of single object responsibility so each object would only be responsible for things
related to itself. The only exception to this is the game class which mostly acts as a control
center for all of the components of the game. Towards the end of the project we did start to run
into issues with this architecture. Namely, passing information from various parts of the game to
others started to become unwieldy, causing us to oftentimes have to go and pass in references
to other classes purely to ensure a single function of the class has access to the data it needs.

Rendering Pipeline
To start rendering using OpenGL, you must first create a context. This contains the

frame buffer that everything renders to and is eventually displayed on screen, and it contains
everything OpenGL uses. From here, we enabled blending and transparency to allow
transparent textures to be properly displayed. After that the vertex array buffer is created. The
vertex array buffer has two important pieces of information. It contains the render target
positions, and the texture sample positions. Each of these coordinates exist within the range of
0 to 1 due to how GPUs handle UV mapping with U and V denoting the axis on which the
textures are sampled. So if you wanted to sample only the top left 32x32 square of a 64x64
texture, you would use the UV coordinates 0 and 0.5 to denote the start of the texture and the
middle of the texture. Once the vertex buffer is created, it must be bound, enabled, and then
have a vertex attribute array created so arguments can be passed to shaders. From here, you
can create the textures and shaders. Once the textures and shaders are created, you can start
rendering things to the screen. If you wish to learn more about the OpenGL rendering pipeline,
we recommend visiting the OpenGL wiki at
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview.

Shaders
From the beginning we wanted to include shaders as part of the rendering engine. This

allows for tricks to be used that make rendering objects more efficient, but also allow for effects
like shifting colors of a sprite, or even distorting it. Unlike your traditional program, shader
programs are compiled at runtime. To create a shader you need to tell OpenGL what type of
shader you want to make, then you must allow it to assign a shader ID. This ID is what you pass
to the GPU whenever you want to render an object so it knows which set of shaders to use to
do so. Once the shader is compiled, you must attach the ID to the shader which sends it to the
GPU, and then link the shader so OpenGL knows that that shader ID is taken.

https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview

8

Sprite Rendering
Once shaders are initialized, and textures are loaded you can begin drawing things to

the screen. To start rendering a texture, first bind the shader you wish to use. Once you do that
you will need to initialize a 4x4 identity matrix. Then you take the position you want to render the
texture at and you translate the matrix by it, but since we lack a 3rd dimension in our game, we
ensure that the z component of the translation is 0. We then go and scale the matrix by the
scale of our texture so it renders as the correct size. After that we set the projection. The
projection translates world space to screen space so we don’t need to worry about moving our
world around the camera whenever the player moves. Once all of that is done, we set the
attributes of the shader to the model, projection, and color so the shader can use them. Then
we activate the sprite and bind it before finally binding the vertex array and drawing it.

Text Rendering
When it comes to text rendering we initially wanted to implement the entire submodule

from scratch, underestimating the complexity of the task. Ultimately, we ended up utilizing the
freetype library, which when combined with openGL, handles the complex vector atlasing and to
some extent the shaders for us. With the freetype library the primary consideration became
managing the font on a glyph level.

Figure 2. Glyph attributes denoting different properties and how they effect glyph offset [1].

On font initialization we load each glyph and the relevant metrics such as advance,
bearing, and height into a text character struct that is then stored within an array indexed by the
character it represents.

The bearing and advance metrics are the most important to pay attention to within our
use case. Bearing X tells us how far the right our glyph is in relation to the origin point on the left
which could be considered where the cursor would begin. Bearing Y similar to bearing X informs
us of the height of the glyph in relation to the horizontal midline from our origin, this is what
ensures that Y and y for example are indeed different heights and that the hook for the lower
case y dips below where the uppercase would stop.

9

The advance attribute informs us of how far to the right our cursor needs to move in
pixels to ensure even spacing between characters. This is also especially important for
determining the pixel width of a provided string to inform the X offset of the textures ensuring
that the string is drawn with the intended alignment in reference to its background. Upon each
call to the draw text function a string is passed that is iterated through, using each character to
index the relevant glyph metrics which are used in conjunction with a shader for drawing onto
the screen.

Context Handling
When beginning to implement the menus and considering the inventory a problem

presented itself we had not initially considered, context handling. How do we ensure that during
the game buttons behave differently? For example, pressing WASD should move the character
in normal circumstances, but do nothing in the pause or the future inventory menu. Initially we
simply had buttons trigger different contexts, through the assignment of a context enum.

if (clickInObject(UIElements["startButton"])) {

context = GAME;

}

The above code snippet is an example of this ‘naive’ implementation, as when the topic
of submenus was discussed it became clear that a single variable was not sufficient as tracking
of previous context states was necessary. Ultimately our ‘final’ design turned our single variable
into a stack, this allowed us to, on press of buttons that should impact the context, push the new
state and simply pop it later to return to the previous menu screen or back into the game itself in
the case of the pause menu. The below snippet exemplifies the difference.

if (contextStack.top() == SETTINGS) {

if (clickInObject(UIElements["backButton"])) {

contextStack.pop();

}

}

Input Handling
Our input handling utilizes an event API provided by SDL to read in input events and

pass them to our input handler which maps specific keys to functions related to those keys. We
utilized the ‘unordered_list’ hashmap to, on startup, map SDL keycodes for the keys we wanted
to use to the appropriate functions for said keys; the snippet below shows this mapping.

keyMap[SDLK_ESCAPE] = &InputHandler::keyboard_escPressed;

keyMap[-SDLK_ESCAPE] = &InputHandler::keyboard_escReleased;

10

Upon the indexing of the keyboard and mouse button maps, the functions would be
called allowing for fewer lines of code and a simplified control structure at the cost of increased
time spent debugging issues which will be expanded upon in the lessons learned section.

World
The world is procedurally generated and split into 16x16x2 chunks. Each chunk consists

of a 16x16 foreground layer and a 16x16 background layer. In order to render the world, a check
is done starting from where the player is offset by half the width of the screen in chunks. The
world checks all the chunks that should be displayed on screen and sees if they are fully
generated. If the chunk is not fully generated it generates the chunk. Furthermore, each chunk
is rendered front to back. So if there is not a block present in the foreground, it will render the
block in the background, and if there is no block in the background then it won’t render anything.

The player is considered to be a property of the world that everything else is oriented
around. It is also the only object in the world that is affected by collision. The player also serves
the unique purpose of being the object that the camera follows at all times.

World Generation
The world generation runs on the main thread and is responsible for lag spikes that are

encountered while playing. The world generation generates one chunk at a time and does so in
five stages.

Figure 3. Phase 1 of world generation

The first stage of world generation is generating the heightmap for the chunk. To do this
a 2D perlin noise is sampled twice, once from the current position in the world, and a second
time from the current position in the world offset by the width of the world. This is done 16 times
per chunk in order to generate the height. From here, the ground level is displaced by the
values in order to generate a smooth wrap around world. Everything below the displaced value
is turned to stone, and everything above it is turned to air.

11

float World::genFloat(float x, float y, float xPeriod, float yPeriod,

float scale) {

return (

(x / (worldSize * chunkSize)) * FBMNoise->GenSingle2D(x / xPeriod,

y / yPeriod, seed) +

(1 - x / (worldSize * chunkSize)) * FBMNoise->GenSingle2D((x +

(worldSize * chunkSize)) / xPeriod, y / yPeriod, seed)

) * scale;

}

Figure 4. Stage 2

The second stage of world generation is generating caves. To do this 2D perlin noise is
sampled for every single tile in the chunk, and then has turbulence applied. This serves to
distort the noise so it does not form smooth continuous caves. After this, a gradient from 0 to 1
is multiplied by the caves with 0 being at the surface of the world, and 1 at the bottom of the
surface layer to ensure that no caves spawn at the surface of the world. This results in the
caves gradually fading in the deeper down you go.

float World::turbulence(float x, float y, float size) {

// Sample 3D Noise using distorted coordinates

float value = 0.0;

float initialSize = size;

while (size >= 1) {

value += genFloat(x, y, size, size, size);

size /= 2.0;

}

return value / initialSize;

}

12

Figure 5. Phase 3 of world generation where cellular automata is applied

Phases 3 and 4 of world generation having cellular automata applied to them. Cellular
automata works by having each tile check its neighbors. If a tile has six or more air neighbors it
will turn into air, or if it has six or more air neighbors it will turn into air. The drawback of this, is
that for each chunk that cellular automata is applied all surrounding chunks have to be
generated to the previous phase. This results in each chunk causing their neighbors to be
partially generated at runtime.

Figure 6. Phase 4 of world generation where cellular automata is applied.

Figure 7. Phase 5 of world generation

13

The final stage of world generation is generating the surface layer of dirt and grass. The
first thing that happens is all excess stone generated by the cellular automata is trimmed away
so the surface returns to its original height. Next, the surface is sampled once again similar to
how it is in the first phase, except it is sampled with a slight offset. This results in the
displacement being slightly different from the surface. Once the sampled values are obtained,
they are used to generate the dirt by having everything above that value minus an offset for the
dirt depth be turned to dirt as long as it is stone. Then, once that is done the entire surface layer
is turned into grass.

Physics
The physics in the game is implemented using axis aligned bounding boxes (AABB)

collision. This style of collision is very common due to its simplicity. This works by checking if
two boxes overlap each other and then displacing one of the boxes for the difference of the
displacement.

The only issue with this is what happens when you have thousands of tiles the player
can potentially collide against? The solution for this problem is to not check against all the tiles.
We know for a fact that the player can only collide with the blocks immediately surrounding the
player, so those are the only blocks that are checked against. Due to a physics bug, we don’t
check the layer of blocks directly at the head. As otherwise the player gets pushed into the
ground when running into head height obstacles. Instead we check the blocks immediately
surrounding the top of the head against the player which results in no clipping through blocks.

Figure 8. The player’s collision boxes and the tiles it is being checked against.

14

Software Development Process

Planning
We used a combination of waterfall and iterative development for planning our project.

The diagram in the Requirements section served as the basis for the general order in which
features would be developed and implemented, however, there were aspects not initially
considered identified during development that were required to continue(eg. The need for a
context system). In the cases of unforeseen requirements and those which required more
artistic considerations, such as UI and Rendering, we transitioned to iterative development
researching, designing, and implementing as necessary.

Testing
To test the game we employed quality assurance testing with the aid of family and

friends. This method of testing was chosen over test driven development as the majority of the
features implemented in the game are purely visual or rely on user input that is not easily
replicated without the use of external programs connected to a debugger.

Figure 9. Matt playtesting Abound at Arctic Comic Con while Anthony van Weel poses for the
camera [2].

A public playtest also took place at Arctic Comic Con as part of the Alaska Developer’s
Alliance Anchorage Game Creator’s booth sponsored by Arctic Shield. This proved to be
insightful as we were able to discover additional bugs that arose from players trying to break the

15

game. In addition, it allowed us to observe how people from a wide variety of backgrounds and
age groups approached the game and its controls without being given instructions. Here we
found that people who were unused to games defaulted to using the arrow keys. In addition, we
found that after adding arrow key support most people were able to pick up the game without
needing instructions on how to play it. The greatest cause of confusion was being unable to
click the hotbar in order to select a different item.

Bug # Bug Solution

1 Middle clicking with the mouse crashes
the game.

This was fixed by adding a catch for
unexpected user input.

2 Right shift makes the pause menu
repeatedly flash onto the screen.

Cause of the bug is unknown.

3 Left control makes the player repeatedly
jump.

Cause of the bug is unknown.

4 9 on the numpad makes the player move
left.

Cause of the bug is unknown.

5 Scrolling down on the hotbar using your
mouse does not work.

Added bidirectional mouse scrolling for
changing hotbar items.

6 Player can fly by pressing the up arrow
key.

Added ground check when jumping with
this key.

7 Fullscreen does not have the hotbar at
the correct position on the screen.

Caused by Windows 10 zoom level,
attempted a fix, but it failed. Since the
cause of the bug was not due to the
game the temporary fix is to change the
zoom settings on Windows 10.

8 Colliding with a block from the bottom
right corner just right will send you flying
through the wall.

This bug is currently not fixed due to
difficulty in reproducing, and lack of
time.

Figure 10. A table indicating different bugs we found during development and their solutions if
we found one.

16

Conclusion

Results
Overall, we hit 12 out of the 15 goals planned. The only goals we didn’t hit were the

player selection screen, world selection screen, and lighting. Looking back, we underestimated
just how much work creating a custom game engine from scratch would take, specifically when
it came to rendering. If given another month, it is possible that we would be able to implement
the lighting, and world menu, but both of those would require reworking sections of the game.
Many of the design decisions taken were taken in the interest of saving time over ensuring the
engine would be fast, modular, and expandable. As such we were able to build the game engine
and game within three months.

Discussion
Although individual components were planned for implementation our initial planning

was surface level (ie. we planned what would be implemented not necessarily how for all
required items.). This resulted in underestimating the time needed to research, design, and
implement some components slowing down the overall progress. As an additional side effect
more focus was allocated toward implementing a working function over an efficient one in some
cases (eg. world rendering).

When developing components we each primarily worked on our own components with
the exception of when a bug came up that we were struggling to resolve. This allowed us to
avoid slowdowns caused by differing implementations of the same component, but was also a
tradeoff that limited our ability to quickly assist each other as we did not always understand why
or how we were implementing each other's components.

The current implementation of the input system is non-dynamic and does not lend itself
to easy reconfiguration for user customization. A solution was thought up that involved
implementing a more robust event manager class, however it was too close to the deadline to
be implemented.

17

References
1) de Vries, J. (n.d.). Text rendering. LearnOpenGL.

https://learnopengl.com/In-Practice/Text-Rendering

2) Arctic Comic Con picture taken by Wyatt White

https://learnopengl.com/In-Practice/Text-Rendering

18

User Manual

User Interface

Main Menu

Figure 11. Main Menu screen
Upon launching the game you will be greeted with the main menu, simply left clicking on

any of the buttons will interact with them. The start button will spawn you in the world, please
see the gameplay section for more information. The options button will take you to a settings
menu where you will be able to adjust audio and video settings, currently only basic audio
settings are implemented, the video button settings does not have any behavior. The credits
button will take you to a credits screen where you can see the authors and contributors. Exit will
close the game.

19

Pause Menu

Figure 12. Pause Menu screen
The pause menu can be opened during gameplay by pressing the ESC button on your

keyboard, from there you can resume gameplay, open the options menu and exit to return to the
main menu.

Settings Menu

Figure 13. Settings menu

20

There are two settings categories within the settings menu, video(not implemented) and
audio. Left clicking with the mouse on either buttons will bring you to the respective settings
options.

Audio Settings

Figure 14. Audio settings menu

There are two audio settings available for adjustment, music volume and sound effects
(SFX) volume. Left clicking right the mouse on either of the left arrows will decrease their
respective volumes and vice versa. The back menu in the top left corner can be used to return
to the previous menu context.

Hotbar

Figure 15. The player’s hotbar
The hotbar is available during gameplay and determines the right and left mouse click

actions within the world. The current selected item can be changed with the scroll wheel, or via
pressing the corresponding number on the number bar.

21

Gameplay

Movement

Figure 16. An in-game screenshot
The player character is controlled via the A, S, Left Arrow, Right Arrow, and Spacebar. A,

S as well as Left Arrow and Right Arrow move the character left and right respectively while the
spacebar is jump.

22

World Interaction
World interaction is limited to the placement and destruction of blocks.

Figure 17. An in-game screenshot demonstrating the player having interacted with the world.
Depending on the selection within the hotbar various actions can be performed:

Pickaxe
With the pickaxe (First item on the left) background and foreground block can be

removed

Blocks
Any of the items from 2-9 on the hotbar are blocks. Blocks can be placed in the

foreground with a left click while having the item selected and the background with a right click.

A yellow selector appears over the grid the cursor is hovering, this is where a block will
be placed or destroyed.

23

Heuristic Evaluation

Severity (H M L Q) Filename Location (line #)
Description of
Defect

Solution/Justificat
ion

M World.cpp 182-199

store in data
structure like list or
map, easier to
manage and
reference

This makes world
gen take much
longer, string
lookups are
inefficient.

H World.h full file No deconstructors

None yet,
troubleshooting
issues with crashes
from freeing the
memory.

L/funny? World.h 87

void
generateChunk(Ch
unk* chonk, int x,
int y, int phase); but
in World.cpp it's
chunk

Forgot to update
header file when
renaming variables

L World.cpp 97, 106...

Same variables
being used for
different entity
comparisons - local
function name vs
class name

Will rename variable
to be more clear

M World.h 28
the seed variable is
not initialized

Added initialization
to constructor.

L World.cpp Full File

world.cpp is very
long, consider
breaking into
mutliple files

Didn't have enough
time to break the
world generation
into its own class

L World.h
22, 23, 37-39, 49,
59 Magic numbers

World Generation
Parameters feel a bit
hand wavy no
matter what

L World.cpp full file
No function
documentation.

None yet, time
contraints have
forced a focus on
implementation.

M World.cpp 6

updateActiveChunk
s() clears all
rendered chunks-
possible to only
clear offscreen
ones?

Deffered due to
complexity.

L World.cpp 253-259

Formatting is
inconsistent with
other lines of code

Issue is only present
in google docs.

24

(e.g. newlines in
args)

L World.cpp 149

scaleBetween()
return expression
really long, unsure
what's being
returned at a
glance; could
assign to a new
variable & then Deprecated

L World.cpp multiple
add coords class
with x & y attributes

Deffered due to
refactoring required
to implement.

L .h 46,48 S vs s in Surface Forgot to change

L .cpp 182-198

consider all caps
for named
constants Unchanged.

L .cpp 339-354

magic number 6;
simplify code
somehow? Forgot to change

World.h 74-75

Using a default
constructor to call
another constructor
in the same class,
possible
initialization error
with World(int seed) Intended behavior

L World.h 27, 77

C++ has a smart
pointer class that
you can use
instead of raw
pointers -- can
prevent memory
leaks

Researching
appropriate
use-cases for our
implementations.

L World.h
multiple (29, 30 for
ex.)

Might be better to
use constexpr
instead of int/float
for some variables

Some of these
variables may seem
like they could, but
aren't implemented
as consts due to
allowing screen size
to be readjusted

Figure 18. Heuristic Evaluations

25

Code Contributions

Audio System: Antonio
Chunk: Anthony
Game Class: 70% Antonio 30% Anthony
Input Handler: 90% Antonio 10% Anthony
Tile : Anthony
World: Anthony
BoundingBox : Anthony
Character: Anthony
Player: Anthony
.frag & .vert files 90 Anthony 10 Antonio
Parallax: Anthony
Rendering Engine: 90% Anthony 10% Antonio
Shaders: Anthony
Sprite: Anthony
UIElement: Antonio

