## **RESIDENTAL OBSERVATION TOWER PROJECT**

CED 2022.05



Imagineering Inc.

321 Tower Circle Anchorage, AK 99504 907-726-7917

Contact: Michele Lott, Project Manager

April, 2022

### **EXECUTIVE SUMMARY**

Imagineering Inc. developed three design alternatives for an 80-foot residential tower for the client, Paul Taylor. The three design alternatives consisted of two steel truss towers: special concentrically braced frame and an eccentrically braced frame, and one timber shear wall tower on a concrete podium. When considering design options for the client, load combinations of gravity, wind, seismic, snow, and live loads were considered on the structures. These forces were used to determine the uplift and overturning of the structure to help determine an adequate foundation design. Two foundation designs were considered, shallow and pile, for each alternative.

All design elements are preliminary and will require further design. Basic designs were completed to a 10% concept design to help the client determine the feasibility and cost of these design alternatives. This study finds that the timber shear wall design on a concrete podium was determined to not be constructable when considering material strength limitations due to high base shear from wind loads. A more in-depth design and consideration could show that this is design is feasible. The steel truss towers were both feasible with the designs presented, and Imagineering Inc. recommends the client choose Design A, the SCBF, as it's cost estimate is comparable with that of the EBF tower, and potentially can be much less with future optimization of the steel structure. With this design, a pile foundation is recommended because of the ease of construction and reliability in unknown soil conditions.

### TABLE OF CONTENTS

| Executive Summary                          | i |
|--------------------------------------------|---|
| 1.0 Introduction                           | 1 |
| 2.1 Design Criteria                        | 2 |
| 2.2 Scope of Work                          | 2 |
| 3.0 Design alternatives                    | 4 |
| 3.1 Design Alternative A                   | 4 |
| 3.2 Design Alternative B                   | 6 |
| 3.3 Design Alternative C                   | 7 |
| 3.4 Foundation Designs                     | 9 |
| 4.0 Cost Estimates                         |   |
| 5.0 Design Comparison                      |   |
| 6.0 Recommendations                        |   |
| Appendices:                                |   |
| Appendix A: Design Alternative A           |   |
| Appendix B: Design Alternative B           |   |
| Appendix C: Design Alternative C           |   |
| Annordiy D. Foundation Design Alternatives |   |

Appendix D: Foundation Design Alternatives Appendix E: Cost Estimate

### **1.0 INTRODUCTION**

Paul Taylor has had the dream of living in a tree house ever since he was young. His desire is to live above the tree line to have a complete 360° view. He wants to be closer to the stars on which he loves to gaze. He has asked Imagineering Inc to help him begin this process of designing his dream house - a residential tower in which he can live.

The proposed location of the tower is between Anchor Point and Homer, Alaska, directly off the Sterling Highway as shown in Figure 1. If the residential tower is built, it will become a landmark. It will be seen by every car passing the highway at this location, similar to the "Dr. Seuss House" off the Parks Highway between Talkeetna and Big Lake. The tower and its unique singularity will be present for every person to witness. The client's request is a unique idea for the Kenai Peninsula, and it is important that the designs presented and considered can withstand the seismic and environmental conditions in Alaska as well as be an appropriate structure for its region.



Figure 1: Map of the Location of the Residential Tower

### 2.1 PROJECT SPECIFICATIONS

The criteria for the residential tower were unrestricted in most areas of the design process. Currently, there is a hill in the nearby landscape that limits the client's views. The client has requested the tower be built at a height that can see adequately over the hill to allow him a 360-degree view. From drone shots taken of the landscape and surrounding area, it was determined that an 80-foot tower would meet this requirement. For the living space the client has requested a 30-foot by 30-foot (900 ft<sup>2</sup>) dimension with a wraparound deck, 360 view windows, and sky lights. All structure materials were allowed to be considered in this feasibility study for the design alternatives.

### 2.2 SCOPE OF WORK

For the feasibility study, Imagineering Inc. has designed the tower structure from multiple materials and developed recommended foundation designs. There will be no design elements for the interior living space of the tower. An assumed weight of the living space will be used for all calculations. Considerations for facilities and piping were not considered in this feasibility study. The feasibility study focused on the structure calculations to determine governing loads and overturning of the structure.

The following are the elements that were included in this feasibility study:

- Creating Design Alternatives
- Calculating Loads
- Load analysis using RISA 3D Modeling
- Foundation Design
- Cost Estimations

### 2.3 DESIGN CRITERIA

IBC 2018 and, by extension, ASCE 7-16 were referenced as the basis for design in this project. While the state of Alaska is currently still utilizing IBC 2012, it is assumed that by the date of permitting for this project, Alaska will have adopted IBC 2018 and ASCE 7-16.

The following is the design criteria used:

Table 1: Design Criteria, ASCE 7-16

| Load      | Criteria                                                                    |
|-----------|-----------------------------------------------------------------------------|
| Wind      | Risk Category II<br>Exposure C<br>Roughness C<br>Wind Speed: 160 mph        |
| Seismic   | Site Class D<br>Risk Category D<br>S <sub>DS</sub> 1.2, S <sub>1</sub> 0.6, |
| Live Load | 40 psf residential, 60 psf deck                                             |
| Dead Load | 25 psf floor, 25 psf roof                                                   |
| Snow Load | 40 psf                                                                      |



Figure 2: ASCE 7-16 Wind Speeds for Alaska

### **3.0 DESIGN ALTERNATIVES**

Imagineering Inc. considered several design material options and ultimately decided on two steel truss frame designs and one timber shear wall design built on a concrete podium for a third, contrasting design. These materials were chosen for the feasibility study as they are common in Alaska. Steel is a reliable material that is relatively easily built and transported. Timber was another material chosen for its common construction use, and concrete was chosen because it can be formed on site. The designs were limited due to the seismic criteria for the area and the height limitations listed in ASCE 7-16. Special concentrically braced frame code allows for a height of 160 ft. Eccentrically braced frames also allow for a height of 160 ft and was chosen for its higher seismic response modification factor. Timber shear walls are limited to 65 ft in height, but the 80 ft height requirement could be met by adding the concrete podium.

### 3.1 DESIGN ALTERNATIVE A

Design A was considered because of its simple construction and reliability. It is a special concentrically braced frame. This means it is proportioned to maximize inelastic drift capacity. It is used to resist lateral loads through vertical concentric truss system of the steel frames. Its members align together at the joints of the structure as illustrated in Figure 3. This structure was considered desirable because it could be primarily fabricated off-site. The connections are not too expensive typically, and it is the most standard design of the three design alternatives.



Figure 3: 3D Rendering Design Alternative A

The seismic calculation on Design Alternative A included a response modification factor, R value, from ASCE 7-16 for special concentrically braced frames. This R value can reduce the load of the seismic force on the structure due to the ductility of the tower. Less ductile structures have a lower R value as the seismic load does not dissipate over the structure as in a more flexible structure. The SCBF has a response modification factor value of 6 which is higher (and therefore more ductile) than the ordinary concentric braced frame (with R of 3.25). The calculations of the seismic loads are included in Appendix A.

Wind loads on the tower were calculated using an open structure analysis due to the open design of the SCBF truss. The wind loads are limited by the reduced surface area in the open structure. The living pace wind load was calculated as a closed structure with uplift considered as a canopy design. Uplift was applied to both the roof and the bottom of the living space.

The steel weight of the building consisted of all the truss under the living space and the steel floor framing for the living quarters. The structure was modeled in RISA 3D to determine its deflection and beam sizes based on the combinations of loads applied. Figure 4 below shows the selected member sizes for design alternative A. This design weight of the steel is 92,000 lbs.



|  | Section Set         | Member Size  |  |  |  |  |
|--|---------------------|--------------|--|--|--|--|
|  | Legs                | HSS 8x8x5/16 |  |  |  |  |
|  | Horizontals         | W 12x40      |  |  |  |  |
|  | Braces              | HSS 4x4x1/4  |  |  |  |  |
|  | Deck                | W 8x31       |  |  |  |  |
|  | Stairs              | W 8x31       |  |  |  |  |
|  | Floor Framing Level | W 21x68      |  |  |  |  |
|  | Roof Framing Level  | W 18x50      |  |  |  |  |
|  |                     |              |  |  |  |  |

Figure 4: Design A Member Details

With these beam sizes, the structure meets the design load demands. The beams with the most force on them are the top beams with the live loads which required a larger sized beam for the girders. In conclusion, this design was considered feasible.

### 3.2 DESIGN ALTERNATIVE B

Design B uses an eccentrically braced frame as shown in Figure 5. An eccentrically braced frame combines the advantages of a stiff braced frame but allows for the inelastic advantages of a more ductile framing system. This is achieved through the link in the beams were the braces meet. This link flexes during seismic movements, preventing fracture.



Figure 5: 3D Rendering of Design Alternative B

While the structures are similar in appearance, the difference in the bracing does affect the loads on the structure. An eccentrically braced frame is much more ductile than the special concentrically braced frame. This allows the R value to move from 6 to 8. The effect that this change had on the seismic load was relatively small, and is shown in Appendix B. The wind calculated values for Design Alternative B are the same as Design Alternative A.

The EBF truss tower was chosen as an alternative because of its higher R value, however, wind loads continued to control the forces on the structure. Figure 6 below shows the members that were sized using RISA 3D loads analysis. The total weight of steel in this design is 91,000 lbs.

This weight is likely to increase with the seismic detailing requirements for the connections and member if this design were to be progressed.



| Section Set         | Member Size  |  |  |  |  |  |
|---------------------|--------------|--|--|--|--|--|
| Legs                | HSS 8x8x5/16 |  |  |  |  |  |
| Horizontals         | W 18x71      |  |  |  |  |  |
| Braces              | HSS 5x5x1/2  |  |  |  |  |  |
| Deck                | W 8x31       |  |  |  |  |  |
| Stairs              | W 8x31       |  |  |  |  |  |
| Floor Framing Level | W 10x60      |  |  |  |  |  |
| Roof Framing Level  | W 8x48       |  |  |  |  |  |
|                     |              |  |  |  |  |  |

Figure 6: Design Alternative B Member Details

#### 3.3 DESIGN ALTERNATIVE C

Design Alternative C consists of timber shear walls, which are walls designed to resist lateral forces, such as wind and seismic, atop a concrete podium. The 3D rendering of this design is in Figure 7. The shear walls are designed to reduce sway and damage to the structure. Timber is much cheaper than steel and a good option, but can require more maintenance. The timber portion is on top of a podium because per the ASCE 7-16 code, wood shear wall structures can only be 65 feet tall in areas of Seismic Design Category D. To accommodate these criteria, a 64-foot building was designed on top of a 16-foot-tall podium. The concrete podium was proposed because it can be cheaper than steel and provide a very secure base. Steel could be used as an alternate to the podium design to allow for more off-site construction.



Figure 7:3D Rendering of Design Alternative C

The wind calculations for this structure are drastically different from the previous two designs as this design is fully enclosed. The force of the wind is much higher as it has more surface area to hit. This distribution of the wind is illustrated in Figure 8. Once again, the wind forces governed over seismic in this design. The vertical seismic load, in Appendix C, is smaller than the wind loads. As the design is fully enclosed, wind uplift only must be considered on the roof the living space.



Figure 8: Wind Distribution for a Closed Structure

The concrete design for rebar was out of scope of the feasibility study, but reinforcement will need to be heavier at the corners of the wall and lighter in the center. The wall thickness for the 16-foot podium was considered to make sure the wall could hold up the 64-foot timber structure. To determine the thickness of the concrete wall, the moment and shear at the foundation were considered. Using engineering judgement, a 10-inch-thick concrete wall was used.

After calculating shear and uplift forces on the structure, in Appendix C, timber detailing was determined to be 2x10 studs at 24 inches on center. The timber framed walls would need to be double sheathed in plywood, exterior and interior of the studs. The connection of the timber structure to the concrete podium, would need to counteract a very high uplift force as the wind forces are very high. While the typical connections available are not sufficient for the forces, there are some options in the market that could potentially be adequate. Further design is required to determine the correct connection to secure the tower to the podium.

### **3.4 FOUNDATION DESIGNS**

Foundation design was analyzed using general knowledge of the soil composition in the Homer area as well as an Alaska Department of Transportation bore log that contained samples taken on the client's property during the early to mid-1990's. All assumptions concerning the soil properties were made conservatively and with the strong recommendation that the client, should he choose to pursue construction of any design alternative, should hire a service to perform a complete geotechnical analysis of his property and reassess each foundation alternative. Supplementary soil properties were found using the Naval Facilities Engineering Systems Command (NAVFAC) design manual 7.01.

Two design options were pursued as foundation alternatives. The assumed soil properties are the same for both foundations. Seasonal active layer is assumed to be 5 feet deep; it is assumed that the soil properties beyond the soft top layer of peat remain as stiff hard sandy silt grading to gravely silty sand due to the lack of data beyond that soil layer. See figure 9.



Figure 9: Simplified DOT Soil Core

The first alternative is a large diameter single driven pile in each corner of the tower. The calculations that were performed in the analysis of the pile foundation were bearing and tensile capacity as well as a lateral capacity check. The second alternative is a cold shallow foundation placed below the assumed frost depth. The calculations that were performed in the analysis of the shallow foundation were bearing capacity, uplift capacity, and elastic settlement based on bearing capacity.

The recommended pile foundation based on the previously mentioned assumptions is a 60 foot long, 24-inch diameter piles with 0.7-inch-thick walls. There will be one pile placed at each corner of the structure. See Figure 10 for a visual representation of the pile foundation alternative.



Figure 10: Pile Foundation with grade beam, not to scale

The shallow foundation will require 6 feet of excavation of existing material, in addition to any further excavation as recommended by in depth geotechnical analysis to provide a stable base. Backfill should be suitable Type A material that can be found in the surrounding area. A square foundation with 9 ft sides will be placed at the base of each tower leg. See Figure 11 for a visual representation of the shallow foundation alternative.



Figure 11: Shallow foundation with grade beam, not to scale

Our recommendation for both foundations is that each side should be connected by a grade beam for additional lateral capacity and overall stability of the structure. In the case of the pile foundation, the grade beam should be a steel section that is placed above ground level to keep it from deteriorating. If a shallow foundation is used, we recommend pouring a concrete grade beam below ground level.

Design alternative C will require further foundation analysis due the loads produced by the structure. It is our recommendation to consider group piles at each corner of design alternative C along with further geotechnical analysis. A basic analysis of group piles using the single pile capacities was performed and called for the use of 2 piles at each corner of the building to resist the increased uplift and shear forces.

### 4.0 COST ESTIMATES

Cost estimating was completed with the assistance of HMS, Inc. The living space was a static cost across all three designs as the design remains constant. Its cost was determined to be \$245,000. Estimates were obtained on all three tower design alternatives. Both foundation designs, pile and shallow, were also considered in the cost estimation. The basic cost estimation listed in tables 2 and 3, do not include any contingencies or escalations.

| Tower Design<br>Alternative | Basic Cost Estimate |
|-----------------------------|---------------------|
| Design A                    | \$455,000           |
| Design B                    | \$450,000           |
| Design C                    | \$185,000           |

#### Table 2: Tower Alternative Cost Estimates

Table 3: Foundation Alternative Cost Estimate

| Foundation Alternative  | Basic Cost Estimate |
|-------------------------|---------------------|
| Shallow                 | \$50,000            |
| Single Pile at each Leg | \$90,000            |
| Group Piles at each Leg | \$110,000           |

The full cost of the structure will vary as this is a preliminary estimate with only a 10% design. Further design of connections and optimization of the designs will potentially drastically change the estimates. It is worth noting as well that the price of steel has significantly increased in recent years, therefore greatly increasing the estimate for tower alternatives A and B. The final recommendation will include a cost as a total of living space, tower design, and selected foundation with all included contingencies and escalations.

### **5.0 DESIGN COMPARISON**

Each tower and foundation design alternative was chosen for evaluation for its specific benefits to the client. Ultimately, the major factors that influenced the selection of a preferred design were structural design, cost, and client requests.

All three tower designs can potentially be structurally sound; however, some elements may be more difficult to design. Design B, ECF, will require more detailed connections than the SCBF. Design C, the timber shear, needs additional design for the connection to the podium base. Design A has a common design which would allow for fewer difficult connection designs.

The current cost estimate shows that Design C is only \$185,000 versus \$450,000 or more for other two designs. While this cost is considerably less, it is certain that this cost will increase

with further design. The initial cost does not include any interior detailing or exterior protection. Each level in the timber shear wall tower will have to have finishes at every 16 feet high, this could potentially multiple the cost of the structure by four, making it not cost effective. Design B, while lighter than A, will also likely be considerably more expensive due to the cost to design the complicated ECF connections. Design A is most likely to have a reduced cost in final design due to the ability to more easily optimize the member sizing at each level.

Each tower design meets the basic requests of the client as the living space is standard across the three. The benefit of Design C, however, is the ability to secure the building from intruders since it is fully enclosed as the client would like to be able to secure his structure. For Designs A and B, additional design work would have to be completed to secure the open tower.

The shallow foundation option, while less expensive than the pile foundation, will require considerably more on-site work as a large amount of soil must be excavated to install the concrete pads. The pile foundation is more expensive, but often more secure in unknown soil conditions.

### **6.0 RECOMMENDATIONS**

After completing the analysis of Designs A, B, and C, Design A has been determined to be the most beneficial design for the client. This design, while more steel weight than design B, is still ultimately more cost effective as the construction of the tower is less intricate on the connection design. Design A meets all the criteria set by the client: 80 feet tall, 900 ft<sup>2</sup> of living space with a wraparound deck, and the ability to add windows around the living area. The aesthetics of Design A and B are almost identical as well.

For the foundation, piles are the recommendation for this structure. Piles require less excavation than the shallow foundation and are a safer choice for the unknown soil conditions.

The final cost estimate of Design Alternative A with a pile foundation is \$2 million, which will allow Mr. Taylor to live his dream of owning an adult tree house.

Appendix A: Alternative A

|                               | Design A                    |                               |
|-------------------------------|-----------------------------|-------------------------------|
| Live Load                     |                             |                               |
| Living Space Dime             | nsions                      |                               |
| <i>l</i> := 30 <i>ft</i>      |                             |                               |
| $w \coloneqq 30 \ ft$         |                             | Table 4.3-1: Residenital (all |
| $Living\_Space := l$          | $w = 900 ft^2$              | other areas except stairs)    |
| $LL\_LS := 40 \ psf$          |                             |                               |
| Deck Dimensions:              | 3 ft perimeter              |                               |
| $Area\_Deck \coloneqq 396$    | $ft^2$                      |                               |
| $LL\_Deck \coloneqq 1.5 \ Ll$ | $L_LS = 60 \ psf$           | Table 4.3-1: Balconies and    |
|                               |                             | Decks 1.5 times area serve    |
| $L \coloneqq LL\_LS + LL\_I$  | $Deck = 100 \ psf$          |                               |
| Snow Load                     |                             |                               |
|                               |                             |                               |
| $S \coloneqq 40 \ psf$        | Table 7.2-1: ASCE 7-16 Home | r                             |
| Roof Dimensions               |                             |                               |
| <i>l</i> := 30 <i>ft</i>      |                             |                               |
| $w \coloneqq 30 \ ft$         |                             |                               |
| $Area\_Roof := l \cdot w$     | $=900 \ ft^2$               |                               |
| Dead Load                     |                             |                               |
|                               |                             |                               |
| D:=50 <b>psf</b>              | *Assumed for Design A       | and B                         |
|                               |                             |                               |
|                               |                             |                               |
|                               |                             |                               |
|                               |                             |                               |
|                               |                             |                               |
|                               |                             |                               |
|                               |                             |                               |
|                               |                             |                               |
|                               |                             |                               |
|                               |                             |                               |
|                               |                             |                               |
|                               |                             |                               |

| Seismic Load A                                     |                                                  |
|----------------------------------------------------|--------------------------------------------------|
| ACT Hazards Data for                               | $\rho \coloneqq 1.3$ ASCE 7-16 12.3.4.2          |
| Homer, AK                                          | $D \coloneqq 50 \ psf$ Assumed*                  |
| $S_{DS}{\coloneqq}1.2$                             | R := 6 Steel Special Concentrically braced frame |
| Design A                                           | $I_e \coloneqq 1$                                |
| $E_v := 0.2 \cdot S_{DS} \cdot D = 12 \ psf$       | ASCE 7-16 12.4-4a                                |
| $W \coloneqq D + .2 \cdot S = 58 \ psf$            | Weight: Dead Load + 20%<br>of Snow Load          |
| $C_s \coloneqq \frac{S_{DS}}{\underline{R}} = 0.2$ |                                                  |
|                                                    |                                                  |
| $V \coloneqq C_s \cdot W = 11.6 \ psf$             |                                                  |
| $E_h \coloneqq \rho \cdot V = 15.08 \ psf$         | ASCE 7-16 12.4-4<br>Qe=V                         |
|                                                    |                                                  |
| $E_{i} t = Lining Space, E_{i} = 13.5$             | $E_h t$ = 3.303 kin                              |
| $L_h c = L c c m g_{-} c pace \cdot L_h = 13.3$    | $\frac{-3.535}{4}$                               |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |
|                                                    |                                                  |

### Wind Calcs for Design A and B (Truss Tower)

| Beam: Wide Flar | nge              | Column: HSS              | Diagonal: HSS |         |       |  |
|-----------------|------------------|--------------------------|---------------|---------|-------|--|
| Size:           |                  | Size:                    |               | Size:   |       |  |
| height:         | 10.2 in          | height:                  | 10.2 in       | height: | 12 in |  |
| Height tower    | 64 ft            |                          |               |         |       |  |
| Width Side      | 30 ft            |                          |               |         |       |  |
| Gross Area Side | 1920 ft^2        | ( height*width)          |               |         |       |  |
| Steal Area      | 482.8 ft^2       |                          |               |         |       |  |
| e               | 0.251458         | ( steel area/gross area) |               |         |       |  |
| Cf              | 2.769321         | ( Figure 29.4-3)         |               |         |       |  |
| Assupmtions     |                  |                          |               |         |       |  |
| Kz              | 1.21             |                          |               |         |       |  |
| Kzt             | 1                |                          |               |         |       |  |
| Kd              | 0.85             |                          |               |         |       |  |
| Ke              | 1                |                          |               |         |       |  |
| G               | 0.85             |                          |               |         |       |  |
| V               | 160 mph          | (Figure 26.5-1A)         |               |         |       |  |
| qz              | 67.40378 lb/ft^2 | (26.10-1)                |               |         |       |  |
| F               | 158.6633 lb/ft^2 | ( 29.4-1)                |               |         |       |  |
| F in pounds     | 76602.64 lb      |                          |               |         |       |  |

| qz                     | 67.40378 lb/ft^2     | (26.10-1) |      |
|------------------------|----------------------|-----------|------|
| G                      | 0.85                 | assume    |      |
|                        | Load Case            | A         |      |
| C <sub>nw</sub>        | 1.2 C <sub>nl</sub>  |           | 0.3  |
|                        | Load Case            | В         |      |
| C <sub>nw</sub>        | -1.1 C <sub>nl</sub> |           | -0.1 |
|                        |                      | -         |      |
| P cw case A            | 68.75185 lb/ft^2     | (27.3-2)  |      |
| P <sub>cl case A</sub> | 17.18796 lb/ft^2     | (27.3-2)  |      |
| P cur cara B           | -63.0225 lb/ft^2     | (27.3-2)  |      |
| LW Lase B              |                      |           |      |

### Living Cooridors Side Wind

Ρ

85.3 lb/ft^2 (Table 27.5-1 at 80 ft- Conservative value)

|      |                  | Exposure C |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |       |
|------|------------------|------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
|      |                  | V (mi/h)   |      |      |      |      |      |      |      |      |      |      |      |      |      |      |       |       |       |
|      | Along-           |            | 110  |      |      | 115  |      |      | 120  |      |      | 130  |      |      | 140  |      |       | 160   |       |
| h    | wind Net<br>Wall |            | L/B  |      |      | L/B  |      |      | L/B  |      |      | L/B  |      |      | L/B  |      |       | L/B   |       |
| (ft) | Pressure         | 0.5        | 1    | 2    | 0.5  | 1    | 2    | 0.5  | 1    | 2    | 0.5  | 1    | 2    | 0.5  | 1    | 2    | 0.5   | 1     | 2     |
| 160  | p <sub>h</sub>   | 49.2       | 48.7 | 43.7 | 54.5 | 53.8 | 48.3 | 60.0 | 59.3 | 53.3 | 72.2 | 71.1 | 64.1 | 85.8 | 84.3 | 76.1 | 117.4 | 115.0 | 103.9 |
|      | Po               | 36.1       | 35.7 | 30.0 | 40.0 | 39.5 | 33.2 | 44.1 | 43.5 | 36.6 | 53.0 | 52.2 | 44.0 | 62.9 | 61.9 | 52.3 | 86.2  | 84.4  | 71.5  |
| 150  | p <sub>h</sub>   | 48.0       | 47.5 | 42.6 | 53.0 | 52.4 | 47.1 | 58.4 | 57.7 | 51.9 | 70.1 | 69.2 | 62.3 | 83.3 | 82.0 | 74.0 | 113.8 | 111.7 | 101.0 |
|      | Po               | 35.5       | 35.2 | 29.6 | 39.3 | 38.8 | 32.7 | 43.3 | 42.8 | 36.1 | 52.0 | 51.3 | 43.3 | 61.7 | 60.7 | 51.4 | 84.3  | 82.8  | 70.2  |
| 140  | p <sub>h</sub>   | 46.6       | 46.2 | 41.4 | 51.5 | 51.0 | 45.8 | 56.7 | 56.1 | 50.4 | 68.1 | 67.2 | 60.6 | 80.7 | 79.6 | 71.8 | 110.2 | 108.3 | 98.0  |
|      | p <sub>b</sub>   | 34.9       | 34.6 | 29.1 | 38.6 | 38.2 | 32.2 | 42.4 | 42.0 | 35.5 | 50.9 | 50.3 | 42.6 | 60.4 | 59.5 | 50.6 | 82.4  | 81.0  | 68.9  |
| 130  | ph               | 45.3       | 45.0 | 40.2 | 50.0 | 49.6 | 44.5 | 55.0 | 54.5 | 48.9 | 65.9 | 65.2 | 58.7 | 78.1 | 77.1 | 69.6 | 106.4 | 104.7 | 94.8  |
|      | p <sub>0</sub>   | 34.3       | 34.0 | 28.7 | 37.8 | 37.5 | 31.7 | 41.6 | 41.2 | 34.9 | 49.9 | 49.3 | 41.9 | 59.1 | 58.3 | 49.6 | 80.5  | 79.2  | 67.6  |
| 120  | ph               | 43.9       | 43.6 | 39.0 | 48.5 | 48.1 | 43.1 | 53.3 | 52.8 | 47.4 | 63.8 | 63.1 | 56.8 | 75.4 | 74.6 | 67.3 | 102.6 | 101.1 | 91.5  |
|      | p <sub>0</sub>   | 33.6       | 33.4 | 28.2 | 37.1 | 36.8 | 31.1 | 40.7 | 40.4 | 34.3 | 48.8 | 48.3 | 41.1 | 57.7 | 57.1 | 48.7 | 78.5  | 77.3  | 66.2  |
| 110  | ph               | 42.5       | 42.3 | 37.7 | 46.9 | 46.6 | 41.6 | 51.5 | 51.1 | 45.8 | 61.5 | 61.0 | 54.8 | 72.7 | 72.0 | 64.8 | 98.6  | 97.3  | 88.1  |
|      | <i>p</i> 0       | 32.9       | 32.8 | 27.7 | 36.3 | 36.1 | 30.6 | 39.9 | 39.6 | 33.6 | 47.7 | 47.3 | 40.3 | 56.3 | 55.8 | 47.6 | 76.4  | 75.4  | 64.7  |
| 100  | ph               | 41.1       | 40.9 | 36.4 | 45.2 | 45.0 | 40.1 | 49.6 | 49.3 | 44.1 | 59.2 | 58.8 | 52.7 | 69.8 | 69.3 | 62.3 | 94.5  | 93.5  | 84.5  |
|      | <i>p</i> 0       | 32.3       | 32.1 | 27.2 | 35.5 | 35.4 | 30.0 | 39.0 | 38.8 | 33.0 | 46.5 | 46.2 | 39.4 | 54.9 | 54.4 | 46.6 | 74.2  | 73.4  | 63.2  |
| 90   | p <sub>h</sub>   | 39.6       | 39.4 | 35.0 | 43.5 | 43.3 | 38.5 | 47.7 | 47.5 | 42.3 | 56.8 | 56.5 | 50.6 | 66.9 | 66.5 | 59.7 | 90.3  | 89.4  | 80.8  |
|      | $p_0$            | 31.6       | 31.5 | 26.6 | 34.7 | 34.6 | 29.4 | 38.1 | 37.9 | 32.3 | 45.4 | 45.1 | 38.5 | 53.4 | 53.1 | 45.5 | 72.1  | 71.4  | 61.6  |
| 80   | <b>p</b> h       | 38.0       | 37.9 | 33.5 | 41.8 | 41.6 | 36.9 | 45.8 | 45.6 | 40.5 | 54.4 | 54.2 | 48.3 | 63.9 | 63.6 | 56.9 | 85.9  | 85.3  | 76.8  |
|      | Po               | 30.9       | 30.8 | 26.1 | 33.9 | 33.8 | 28.7 | 37.2 | 37.1 | 31.5 | 44.2 | 44.0 | 37.6 | 52.0 | 51.7 | 44.3 | 69.8  | 69.3  | 59.8  |
| 70   | Dh               | 36.4       | 36.3 | 32.0 | 39.9 | 39.9 | 35.2 | 43.7 | 43.6 | 38.6 | 51.9 | 51.7 | 45.9 | 60.8 | 60.6 | 54.0 | 81.4  | 81.0  | 72.7  |

| Imagineering Inc. | Tower | SK - 3   Apr 19, 2022 at 8:21 PM   Tower Design 1 (1).r3d |
|-------------------|-------|-----------------------------------------------------------|

#### <chiFc``YX`GhYY``GYWjcb`GYhg

|   |   | Šæà^          | Ù@a}^       | V^]^    | Ö^∙āt}ÁŠãarc | Tæe∿¦ãæ¢      | Ö^∙ ã} ÁÜ*  ^• | 05 Âğı Gá | Q^ÁŽajlá | Q:ÁŽájlá | RÁŽájlá. |
|---|---|---------------|-------------|---------|--------------|---------------|----------------|-----------|----------|----------|----------|
|   | F | Š^*•          | PÙÙÌ ¢Ì ¢F€ | Ô[ ゙{ } | V°à^         | ŒIJG          | V^] 38æ        | FÎÈ       | FLÎ      | FLÎ      | GI       |
|   | G | P[¦ã[}œ+•     | YFG¢I€      | Ó^æ     | Yãå^ÁØ æ},*^ | ŒIJG          | V^] 38æ        | FFË       | - IIÈF   | Hە       | È€Î      |
| ſ | Н | Ó¦æ\$∕∙       | PÙÙI ¢I ¢Ì  | XÓ¦æ&^  | V°à^         | CÉI€€ÃÕ¦ÈÓÁÜÈ | Ë V^]ã&æ;      | ÎÈ€G      | FFÈ      | FFÈJ     | GF       |
|   | 1 | å^&∖          | YÌ¢HF       | Ó^æ     | Yãå^ÁØ æ}*^  | ŒIJG          | V^] 38æ        | JÈH       | ΗΪÈΕ     | FF€      | ĚĤ       |
|   | Í | • 🚌 •         | YÌ¢HF       | Ó^æ     | Yãå^ÁØ æ},*^ | ŒIJG          | V^] 38æ        | JÈFH      | Η̈́ÈF    | FF€      | ĚĤ       |
| Ī | Î | Ø[[¦ÁØlæ{ð]⊞  | ÈYGF¢ÎÌ     | Ó^æ     | Yãå^ÁØ æ}*^  | ŒIJG          | V^] 38æ        | G€        | ÎIË      | FIÌ€     | GÈLÍ     |
| ſ | Ï | Ü[[~ÁØlæ(jå)⊞ | ĒYF̢̀       | Ó^æ     | Yãå^ÁØ æ}*^  | ŒIJG          | V^] 38æ        | FIË       | I€È      | Ì€€      | FÈG      |
|   | ì | Öĭ{{^ÁÓ¦æ∰    | PÙÙÍ ¢Í ¢H  | XÓ¦æ&^  | V°à^         | ŒIJG          | V^1 88æ        | HÈGÌ      | FŒĨ      | FŒĨ      | FJÈ      |

#### A Ya VYf '8]glf]Vi hYX @ UXg 'f6 @' (`.`@j Y @ UX @j ]b[ Ł

|   | T^{à^¦ÁŠæèà^∣ | Öãi^&ca∦i} | Ùcæ¦oÁTæt*}ãĉå^Ž(àĐc∰ | ÈÒ}åÁTætੈ}ãčå^ŽjàÐo6Ê2BÌ | ÈÈÙcæloxÁŠ[&aæa¶[}ŽaÉÃá | Ò}åÁĞ[&ææã[}ŽdÊÄá |
|---|---------------|------------|-----------------------|--------------------------|-------------------------|-------------------|
| F | T FH          | Ϋ́         | Ë€€                   | Ë€€                      | €                       | €                 |
| G | TÍF           | Ϋ́         | Ë€                    | Ë€€                      | €                       | €                 |

#### A Ya VYf 8]ghf]Vi hYX @ UXg f6 @ ') . @j Y @ UX 8 YWŁ

|   | T^{à^¦ÁŠææà^∣ | Öãi^&ca∰i} | Ùcæ¦oÁTæt*}ãĉå^Ž(àĐc∰ | ÈÙcælo4Š[&ænañ]}ŽedÊÁá | Ò}åÆŠ[&æaaã[}ŽdÉÃá |   |
|---|---------------|------------|-----------------------|------------------------|--------------------|---|
| F | T F€Í Œ       | Ϋ́         | ËFÍ€                  | ËÉÍ€                   | €                  | € |
| G | TÎÌ           | Ϋ́         | ËFÍ€                  | ËFÍ€                   | €                  | € |
| Н | T F€I Ó       | Ϋ́         | ËFÍ€                  | ËFÍ€                   | €                  | € |
|   | TÍF           | Ϋ́         | ËFÍ€                  | ËFÍ€                   | €                  | € |
| Í | TH            | Ϋ́         | ËFÍ€                  | ËFÍ€                   | €                  | € |
| Î | TÌ COE        | Ϋ́         | ËFÍ€                  | ËFÍ€                   | €                  | € |
| Ï | T FH          | Ϋ́         | ËFÍ€                  | ËFÍ€                   | €                  | € |
| ì | TÌHOE         | Ϋ́         | ËFÍ€                  | ËFÍ€                   | €                  | € |

#### A Ya VYf 8 ]ghf ] Vi hYX @ UXg f6 @ \*\* . Gbck @ UXŁ

|   | T^{à^¦AŠæèa^∣ | Öãi^&ca‡í} | ÙcæloÁTæt*}ãĉå^ŽjàÐc∰ | ÈÒ}åÁTætੋ}ãčå^ŽàМÊ2È | ÈÙcælo%õ[&ænañ[}ŽedÊÁá | Ò}åÆŠ[&æa£ã[}ŽdÉÃá |
|---|---------------|------------|-----------------------|----------------------|------------------------|--------------------|
| F | ТЇН           | Ϋ́         | Ë€€                   | Ë€€                  | €                      | €                  |
| G | TÌ€           | Ϋ́         | Ë€                    | Ê€                   | €                      | €                  |

#### A Ya VYf 8]ghf]Vi hYX @ UXg f6 @ ', `. 9 Uf h ei U\_Y JŁ

|   | T^{à^¦AŠæèa^∣ | Öãi^&caįį́} | Ùcæ¦oÁTæt*}ãĉå^Ž(àÐc∰ | ÈÒ}åÁTætੈ}ãčå^ŽjàÐo6Ê2BÌ | ÈÙcælo%õ[&æna¶}ŽebÃá | Ò}åÁĞ[&ææã[}ŽdÉÄá |
|---|---------------|-------------|-----------------------|--------------------------|----------------------|-------------------|
| F | T FH          | Ϋ́          | ËÈÌ€                  | ËFÌ€                     | €                    | €                 |
| G | TÍF           | Ϋ́          | ËÈÌ€                  | ËÈÌ€                     | €                    | €                 |

#### A Ya VYf 8 ]ghf ]Vi hYX @ UXg f6 @ - . . 8 YUX @ UXŁ

|   | T^{à^¦ÁŠææà^∣ | Öãi^&cã∦} | Ùcæ¦oÁTæt*}ãc°å^ŽàÐd⊞ | ÈÒ}åÁTætੈ}ãčå^ŽàÐdÊ2ÈE | È.Ùcælo4Š[&æαā]}ŽebÃá | Ò}åÆŠ[&æaaā[}ŽdÉÄá |
|---|---------------|-----------|-----------------------|------------------------|-----------------------|--------------------|
| F | T FH          | Ϋ́        | ËÍ€                   | Ëĺ€                    | €                     | €                  |
| G | TÍF           | Ϋ́        | Ëĺ€                   | Ëĺ€                    | €                     | €                  |

#### >c]bh@UXg'UbX'9 bZcf WIX'8 ]gd`UWYa Ybhg'f6 @' ' `.`K ]bX'@j ]b[ '7`cgYXL

|   | R[ā]oAŠæà∧ | ŠÊÖÊT | Öã^&cąį́} | Tæ*}ãĩå^ŽÇÊËdĐÁÇAĴÊæåDÁQ E•âGĐÀÀ |
|---|------------|-------|-----------|----------------------------------|
| F | FÊ         | Š     | Z         | ËF€ÈH                            |
| G | FĚ         | Š     | Z         | ËF€ÈH                            |
| Н | GÊ         | Š     | Z         | ËF€ÌH                            |
|   | GĚ         | Š     | Z         | ËF€ÈH                            |

ÜQÜCEEHÖÁx^\+oāţ}ÁrîÈeEÈAÄÄÄÄÄÖKa/v+^\+oa(}|[ccaÖ[,}N=Z\*+AÖ/+oa(A)[,^+AÖ/+oa7+A/FDÈHåáÁ

Úæ\*^ÁF



CE]¦ÁRJÉÃG€GG ÌKEÏÁÚT Ô@&&∧åÁÓ^K ΄΄΄΄

#### >c]bh@UXg'UbX'9 bZcf W/X'8 ]gd`UW/a Yb/g'f6 @' %%. K ]bX'FccZL

|   | R[ā]oÁŠæà∧ | ŠÊDÊT | Öã^8cã[} | Tæt}ãã å^ŽÇÊË ËoDÊÁÇÌÊ ÊæåDÊÁÇ E•âGĐÈÈÈ |
|---|------------|-------|----------|-----------------------------------------|
| F | FÊ         | Š     | Ϋ́       | ËF€ÈH                                   |
| G | GÊ         | Š     | Ϋ́       | ËF€Ĥ                                    |
| Н | HÊ         | Š     | Ϋ́       | ËF€ÈH                                   |
|   | I È        | Š     | Ϋ́       | ËF€ÈH                                   |

#### A Ya VYf Dc]bh@cUXg f6 @7 (`.`@j Y @cUX`@j ]b[ Ł

|   | T^{à^¦/Šæèà^∣ | Öã^&cãį} | Tæt*}ãõå^ŽŠËËcá | ŠĮ & and and j ŽeĐÃ á |
|---|---------------|----------|-----------------|-----------------------|
| F | T FH          | ^        | €               | €                     |
| G | T FH          | ^        | €               | €                     |

#### A Ya VYf Dc]bh@cUXg f6 @7 + . 9Ufh ei U\_Y < nL

|   | T^{ à^¦ÁŠææì^∣      | Öã^&cąĩ} | Tæ*}ããå^ŽÊËcá         | Š[&aedā]}ŽebĒĂá |  |
|---|---------------------|----------|-----------------------|-----------------|--|
| F | T FH                | Z        | <del>Ë IÈ</del> II Í  | €               |  |
| G | T F€GŒ              | Z        | <del>Ë LË I</del> I Í | €               |  |
| Н | TÍF                 | Z        | <del>Ë LÈ I</del> I Í | €               |  |
| 1 | T F <del>€H</del> Œ | Z        | <del>Ë IÈ</del> IÍ Í  | €               |  |

### A Ya VYf Dc]bh@cUXg f6 @7 %\$`. 9Ufh ei U\_Y < I Ł

|   | T^{ à^¦ÁŠæè^∣ | Öã^&cã[} | Tæ*}ãĉå^ŽÊËcá       | Š[&aeeā]}ŽoĐÃá |  |
|---|---------------|----------|---------------------|----------------|--|
| F | T F€HCE       | ¢        | <del>Ë IÈ I</del> Í | €              |  |
| G | TÍF           | ¢        | <del>Ë LË I</del> Í | €              |  |
| Н | T FH          | ¢        | <del>Ë LË I</del> Í | €              |  |
|   | T F€GŒ        | ¢        | ËHÈHIÍ              | €              |  |

#### 6Ug]W@UX'7UgYg

|    | ÓŠÔÁÖ^∙&¦ājαąį}       | Ôæ*^*[¦^ | ÝÁÕ¦æçãĉ | ŸÁÕ¦æçãĉ | ZÁÕ¦æçãcî | RĮą̃c | Ú[ậc | Öã dãaĭd∄ | ËEE^æÇT ÈË | EÙĭ¦æs8∧⊞ |
|----|-----------------------|----------|----------|----------|-----------|-------|------|-----------|------------|-----------|
| F  | Õ¦æçãĉ                | ÖŠ       |          | Ë        |           |       |      |           |            |           |
| G  | YậiåÁU]^}Á∕[ ∖ ^¦     | ΥŠ       |          |          |           |       |      |           | G          |           |
| Н  | Yājå,ÁŠãçãj*ÁÔ∥[∙^å   | ΥŠ       |          |          |           | 1     |      |           |            |           |
|    | Šãç^ ÁŠ[ æå ÁŠãçã), * | ŠŠ       |          |          |           |       | G    | G         |            |           |
| Í  | Šãç^ÁŠ[æåÁÖ^&∖        | ŠŠ       |          |          |           |       |      | ì         |            |           |
| Î  | Ù}[, ÁŠ[æå            | ÙŠ       |          |          |           |       |      | G         |            |           |
| Ï  | Òæło@ĭæ∖^Æ?:          | ÒŠZ      |          |          | ËG        |       |      |           |            |           |
| Ì  | Òæło@ĭæ∖^ÁK           | ÒŠŸ      |          |          |           |       |      | G         |            |           |
| J  | Ö^æåÅŠ[æå             | ÖŠ       |          |          |           |       |      | G         |            |           |
| F€ | Òæło@ĭæl^A₽¢          | ÒŠÝ      | ËG       |          |           |       | 1    |           |            |           |
| FF | Y ā åÁÜ[[~            | Y ŠŸ     |          |          |           |       |      |           |            |           |

#### @cUX7caV]bUhjcb8Yg][b

|   | Ö^∙&¦a]ica[i} | ŒÙØØ | ÔÖ | Ù^¦çã&∧ | P[oÁÜ[∥^å | Ô[ å <i>Á</i> 2[¦ÈÈÈ | Y[[å | Ô[}&¦^ơ^ | Tæ•[}¦^ | OE[`{ā}``{ | Ùœa∯ ^∙∙∙ | Ô[}}^&ca[i] |
|---|---------------|------|----|---------|-----------|----------------------|------|----------|---------|------------|-----------|-------------|
| F | ŠÔF           |      |    |         | Ϋ́^∙      | Ϋ́^∙                 | Ÿ^∙  | Ϋ́^∙     | Ÿ^∙     | Ϋ́^∙       | Ϋ́^∙      | Ϋ́^∙        |
| G | ŠÔG           |      |    |         | Ϋ́^•      | Ϋ́^∙                 | Ϋ́^∙ | Ϋ́^∙     | Ÿ^∙     | Ϋ́^∙       | Ϋ́^∙      | Ϋ́^∙        |
| Н | ŠÔHæ          |      |    |         | Ϋ́^∙      | Ϋ́^∙                 | Ÿ^∙  | Ÿ^∙      | Ÿ^∙     | Ÿ^∙        | Ϋ́^∙      | Ϋ́^∙        |
| 1 | ŠÔHà          |      |    |         | Ϋ́^∙      | Ϋ́^∙                 | Ϋ́^∙ | Ϋ́^∙     | Ÿ^∙     | Ϋ́^∙       | Ϋ́^∙      | Ϋ́^∙        |
| Í | ŠÔI           |      |    |         | Ÿ^∙       | Ϋ́^∙                 | Ϋ́^• | Ÿ^∙      | Ÿ^∙     | Ÿ^∙        | Ϋ́^∙      | Ϋ́^∙        |
| Î | ŠÔÍ           |      |    |         | Ϋ́^∙      | Ϋ́^∙                 | Ÿ^∙  | Ϋ́^∙     | Ÿ^∙     | Ϋ́^∙       | Ϋ́∧•      | Ϋ́^∙        |

ÜQÜQEEHÖÁX^¦•ã[}ÁFÎÈEÈE ÁÁÁÁÁÁŐK8//•^¦•a(}[[ccaÖ[,}][æå•a/[,^¦ÁÖ^•ã\*}ÁFÁÇFDÈHåáÁ

Úæ\*^ÁG

CE;¦ÁFJÉŽG€GG ÌKFÏÁÚT Ô@&&∧åÁÓ^K ´´´´

#### @UX'7 ca V]bUhjcb'8 Yg][b'f/7 cbhjbi YXŁ

|    | Ö^∙&¦ā]ca[} | ŒÙØØ | ÔÖ | Ù^¦çã&∧ | P[oÁÜ[∥^å | Ô[ åÁ2[¦⊞È | Y[[å | Ô[}&¦^ơ^ | Tæ•[}¦^ | OĘĩ{ậjĩ{ | Ùæa∰, ^∙∙∙ | Ô[}}^&ca[i] |
|----|-------------|------|----|---------|-----------|------------|------|----------|---------|----------|------------|-------------|
| Ï  | ŠÔÎ ĐÔ¢     |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ÿ^∙  | Ÿ^∙      | Ϋ́^∙    | Ÿ^∙      | Ϋ́^∙       | Ϋ́^∙        |
| ì  | ŠÔÎĐÔ:      |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ÿ^∙  | Ÿ^∙      | Ϋ́^∙    | Ÿ^∙      | Ϋ́^∙       | Ϋ́^•        |
| J  | ŠÔÏ ĐÔ¢     |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ÿ^∙  | Ÿ^∙      | Ϋ́^∙    | Ϋ́^∙     | Ϋ́^∙       | Ϋ́^∙        |
| F€ | ŠÔÏEDÒ:     |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ÿ^∙  | Ÿ^∙      | Ϋ́^∙    | Ϋ́^∙     | Ϋ́^∙       | Ϋ́^∙        |
| FF | Ù^ -ÁY_^ã@c |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ÿ^∙  | Ϋ́^∙     | Ϋ́^∙    | Ϋ́^∙     | Ϋ́^∙       | Ϋ́^∙        |
| FG | ÖŠ          |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ÿ^∙  | Ÿ^∙      | Ϋ́^∙    | Ϋ́^∙     | Ϋ́^•       | Ϋ́^∙        |
| FH | ÙŠ          |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ÿ^∙  | Ÿ^∙      | Ϋ́^∙    | Ϋ́^∙     | Ϋ́^∙       | Ϋ́^∙        |
| FI | ŠŠ          |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ÿ^∙  | Ϋ́^∙     | Ϋ́^∙    | Ϋ́^∙     | Ϋ́^∙       | Ϋ́^∙        |
| FÍ | ΥF          |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ÿ^∙  | Ϋ́^∙     | Ϋ́^∙    | Ϋ́^∙     | Ϋ́^∙       | Ϋ́^∙        |
| FÎ | ΥG          |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ϋ́^∙ | Ÿ^∙      | Ϋ́^∙    | Ϋ́^∙     | Ϋ́^∙       | Ϋ́^•        |
| FΪ | ÒF          |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ÿ^∙  | Ÿ^∙      | Ϋ́^∙    | Ϋ́^∙     | Ϋ́^∙       | Ϋ́^∙        |
| FÌ | ÒG          |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ϋ́^∙ | Ϋ́^∙     | Ϋ́^∙    | Ϋ́^∙     | Ϋ́^∙       | Ϋ́^∙        |

ÜQÙQEHÖÁX^¦• ą̃ } ÁFÎ ÈEÈ Á¥¥¥¥ZÔH&/\•<[+a( } |[ œë) ] [] æ\*• a/[ , ^¦ ÁÖ^• ã } ÁFÁÇEDÈHåáÁ

Úæ\*^Áн

Appendix B: Alternative B

|                            | Design B                     |                             |
|----------------------------|------------------------------|-----------------------------|
| Live Load                  |                              |                             |
| Living Space Dime          | ensions                      |                             |
| $l \coloneqq 30 \ ft$      |                              |                             |
| $w \coloneqq 30 \ ft$      |                              | Table 4.3-1: Residenital (a |
| $\_Living\_Space := l$     | $\cdot w = 900 ft^2$         | other areas except stairs)  |
| $LL\_LS := 40 \text{ psf}$ |                              |                             |
| Deck Dimensions:           | : 3 ft perimeter             |                             |
| Area $Deck \approx 396$    | $5 ft^2$                     |                             |
| $LL\_Deck \coloneqq 1.5 L$ | $L_LS = 60 \ psf$            | Table 4.3-1: Balconies and  |
|                            |                              | Decks 1.5 times area serve  |
| $L \coloneqq LL\_LS + LL\$ | $Deck = 100 \ psf$           |                             |
| Snow Load                  |                              |                             |
| $S \coloneqq 40 \ psf$     | Table 7.2-1: ASCE 7-16 Homer |                             |
| Roof Dimensions            |                              |                             |
| $l \coloneqq 30 \ ft$      |                              |                             |
| $w \coloneqq 30 \ ft$      |                              |                             |
| $Area\_Roof := l \cdot w$  | $v = 900 \ ft^2$             |                             |
| Dead Load                  |                              |                             |
| D≔50 <b>psf</b>            | *Assumed for Design A and    | В                           |
|                            |                              |                             |
|                            |                              |                             |
|                            |                              |                             |
|                            |                              |                             |
|                            |                              |                             |
|                            |                              |                             |
|                            |                              |                             |
|                            |                              |                             |
|                            |                              |                             |

Non-Commercial Use Only



### Wind Calcs for Design A and B (Truss Tower)

| Beam: Wide Flar | nge              | Column: HSS              |         | Diagonal: HSS |       |
|-----------------|------------------|--------------------------|---------|---------------|-------|
| Size:           |                  | Size:                    | Size:   |               |       |
| height:         | 10.2 in          | height:                  | 10.2 in | height:       | 12 in |
| Height tower    | 64 ft            |                          |         |               |       |
| Width Side      | 30 ft            |                          |         |               |       |
| Gross Area Side | 1920 ft^2        | (height*width)           |         |               |       |
| Steal Area      | 482.8 ft^2       |                          |         |               |       |
| e               | 0.251458         | ( steel area/gross area) |         |               |       |
| Cf              | 2.769321         | ( Figure 29.4-3)         |         |               |       |
| Assupmtions     |                  |                          |         |               |       |
| Kz              | 1.21             |                          |         |               |       |
| Kzt             | 1                |                          |         |               |       |
| Kd              | 0.85             |                          |         |               |       |
| Ke              | 1                |                          |         |               |       |
| G               | 0.85             |                          |         |               |       |
| V               | 160 mph          | (Figure 26.5-1A)         |         |               |       |
| qz              | 67.40378 lb/ft^2 | (26.10-1)                |         |               |       |
| F               | 158.6633 lb/ft^2 | ( 29.4-1)                |         |               |       |
| F in pounds     | 76602.64 lb      |                          |         |               |       |

| qz                     | 67.40378 lb/ft^2     | (26.10-1) |      |
|------------------------|----------------------|-----------|------|
| G                      | 0.85                 | assume    |      |
|                        | Load Case            | A         |      |
| C <sub>nw</sub>        | 1.2 C <sub>nl</sub>  |           | 0.3  |
|                        | Load Case            | В         |      |
| C <sub>nw</sub>        | -1.1 C <sub>nl</sub> |           | -0.1 |
|                        |                      | -         |      |
| P cw case A            | 68.75185 lb/ft^2     | (27.3-2)  |      |
| P <sub>cl case A</sub> | 17.18796 lb/ft^2     | (27.3-2)  |      |
| P cur cara B           | -63.0225 lb/ft^2     | (27.3-2)  |      |
| LW Lase B              |                      |           |      |

### Living Cooridors Side Wind

Ρ

85.3 lb/ft^2 (Table 27.5-1 at 80 ft- Conservative value)

|      |                       |      |      |      |      |      |      |      |      |      |             | Бурс | Sure ( | -    |      |      |       |       |       |
|------|-----------------------|------|------|------|------|------|------|------|------|------|-------------|------|--------|------|------|------|-------|-------|-------|
|      | V (mi/h)              |      |      |      |      |      |      |      |      |      |             |      |        |      |      |      |       |       |       |
|      | Along-                |      | 110  |      |      | 115  |      |      | 120  |      |             | 130  |        |      | 140  |      |       | 160   |       |
| h    | wind Net<br>Wall      |      | L/B  |      |      | L/B  |      |      | L/B  |      |             | L/B  |        |      | L/B  |      |       | L/B   |       |
| (ft) | Pressure              | 0.5  | 1    | 2    | 0.5  | 1    | 2    | 0.5  | 1    | 2    | 0.5         | 1    | 2      | 0.5  | 1    | 2    | 0.5   | 1     | 2     |
| 160  | p <sub>h</sub>        | 49.2 | 48.7 | 43.7 | 54.5 | 53.8 | 48.3 | 60.0 | 59.3 | 53.3 | 72.2        | 71.1 | 64.1   | 85.8 | 84.3 | 76.1 | 117.4 | 115.0 | 103.9 |
|      | p <sub>0</sub>        | 36.1 | 35.7 | 30.0 | 40.0 | 39.5 | 33.2 | 44.1 | 43.5 | 36.6 | 53.0        | 52.2 | 44.0   | 62.9 | 61.9 | 52.3 | 86.2  | 84.4  | 71.5  |
| 150  | p <sub>h</sub>        | 48.0 | 47.5 | 42.6 | 53.0 | 52.4 | 47.1 | 58.4 | 57.7 | 51.9 | 70.1        | 69.2 | 62.3   | 83.3 | 82.0 | 74.0 | 113.8 | 111.7 | 101.0 |
|      | Po                    | 35.5 | 35.2 | 29.6 | 39.3 | 38.8 | 32.7 | 43.3 | 42.8 | 36.1 | 52.0        | 51.3 | 43.3   | 61.7 | 60.7 | 51.4 | 84.3  | 82.8  | 70.2  |
| 140  | p <sub>h</sub>        | 46.6 | 46.2 | 41.4 | 51.5 | 51.0 | 45.8 | 56.7 | 56.1 | 50.4 | 68.1        | 67.2 | 60.6   | 80.7 | 79.6 | 71.8 | 110.2 | 108.3 | 98.0  |
|      | p <sub>b</sub>        | 34.9 | 34.6 | 29.1 | 38.6 | 38.2 | 32.2 | 42.4 | 42.0 | 35.5 | 50.9        | 50.3 | 42.6   | 60.4 | 59.5 | 50.6 | 82.4  | 81.0  | 68.9  |
| 130  | ph                    | 45.3 | 45.0 | 40.2 | 50.0 | 49.6 | 44.5 | 55.0 | 54.5 | 48.9 | 65.9        | 65.2 | 58.7   | 78.1 | 77.1 | 69.6 | 106.4 | 104.7 | 94.8  |
|      | p <sub>0</sub>        | 34.3 | 34.0 | 28.7 | 37.8 | 37.5 | 31.7 | 41.6 | 41.2 | 34.9 | 49.9        | 49.3 | 41.9   | 59.1 | 58.3 | 49.6 | 80.5  | 79.2  | 67.6  |
| 120  | ph                    | 43.9 | 43.6 | 39.0 | 48.5 | 48.1 | 43.1 | 53.3 | 52.8 | 47.4 | 63.8        | 63.1 | 56.8   | 75.4 | 74.6 | 67.3 | 102.6 | 101.1 | 91.5  |
|      | p <sub>0</sub>        | 33.6 | 33.4 | 28.2 | 37.1 | 36.8 | 31.1 | 40.7 | 40.4 | 34.3 | 48.8        | 48.3 | 41.1   | 57.7 | 57.1 | 48.7 | 78.5  | 77.3  | 66.2  |
| 110  | ph                    | 42.5 | 42.3 | 37.7 | 46.9 | 46.6 | 41.6 | 51.5 | 51.1 | 45.8 | 61.5        | 61.0 | 54.8   | 72.7 | 72.0 | 64.8 | 98.6  | 97.3  | 88.1  |
|      | <i>p</i> 0            | 32.9 | 32.8 | 27.7 | 36.3 | 36.1 | 30.6 | 39.9 | 39.6 | 33.6 | 47.7        | 47.3 | 40.3   | 56.3 | 55.8 | 47.6 | 76.4  | 75.4  | 64.7  |
| 100  | <i>p</i> <sub>h</sub> | 41.1 | 40.9 | 36.4 | 45.2 | 45.0 | 40.1 | 49.6 | 49.3 | 44.1 | 59.2        | 58.8 | 52.7   | 69.8 | 69.3 | 62.3 | 94.5  | 93.5  | 84.5  |
|      | <i>p</i> 0            | 32.3 | 32.1 | 27.2 | 35.5 | 35.4 | 30.0 | 39.0 | 38.8 | 33.0 | 46.5        | 46.2 | 39.4   | 54.9 | 54.4 | 46.6 | 74.2  | 73.4  | 63.2  |
| 90   | p <sub>h</sub>        | 39.6 | 39.4 | 35.0 | 43.5 | 43.3 | 38.5 | 47.7 | 47.5 | 42.3 | 56.8        | 56.5 | 50.6   | 66.9 | 66.5 | 59.7 | 90.3  | 89.4  | 80.8  |
|      | $p_0$                 | 31.6 | 31.5 | 26.6 | 34.7 | 34.6 | 29.4 | 38.1 | 37.9 | 32.3 | 45.4        | 45.1 | 38.5   | 53.4 | 53.1 | 45.5 | 72.1  | 71.4  | 61.6  |
| 80   | <b>p</b> h            | 38.0 | 37.9 | 33.5 | 41.8 | 41.6 | 36.9 | 45.8 | 45.6 | 40.5 | <b>54.4</b> | 54.2 | 48.3   | 63.9 | 63.6 | 56.9 | 85.9  | 85.3  | 76.8  |
|      | Po                    | 30.9 | 30.8 | 26.1 | 33.9 | 33.8 | 28.7 | 37.2 | 37.1 | 31.5 | 44.2        | 44.0 | 37.6   | 52.0 | 51.7 | 44.3 | 69.8  | 69.3  | 59.8  |
| 70   | Dh                    | 36.4 | 36.3 | 32.0 | 39.9 | 39.9 | 35.2 | 43.7 | 43.6 | 38.6 | 51.9        | 51.7 | 45.9   | 60.8 | 60.6 | 54.0 | 81.4  | 81.0  | 72.7  |

#### <chiFc``YX'GhYY`GYWFjcb'GYhg

|   | Šæà^         | Ù@a‡}^      | V^]^   | Ö^∙āt}ÁŠãarc  | Tæe∿¦ãæ¢       | Ö^∙ã}ÁÜ*  ^ | 05243)Gá | Q^ÂŽajlá | Q∷ÁŽajlá | RÁŽajlá. |
|---|--------------|-------------|--------|---------------|----------------|-------------|----------|----------|----------|----------|
| F | Š^*•         | PÙÙÌ ¢Ì ¢F€ | Ô[ ˘{} | V°à^          | ŒÍ€€ÃÕ¦ÈÓÁÜE   | ₩E V^]ã&æe  | FÎÈ      | FLÎ      | FLÎ      | GI       |
| G | P[¦ã[}œ      | Y FÌ¢Ï F    | Ó^æ    | Yãå^ÁØ æ}*^   | ŒIJG           | V^] ã&æ     | G€ÈJ     | ΀ÌH      | FFÏ €    | HÈLJ     |
| Н | Ó¦æ&^∙       | PÙÙÍ ¢Í ¢Ì  | XÓ¦æ&^ | V°à^          | CÉ €€ÃÕ¦ÈÓÁÜE  | ËE V^]ã&æe∳ | ÏÈÌ      | Ĝ        | Ĝ        | ΪII      |
|   | å^&∖         | YÌ¢HF       | Ó^æ    | Yãa^Á2 aa);*^ | ŒJG            | V^] 38æ     | JÈH      | НËЕ      | FF€      | ĚĤ       |
| Í | • (##) •     | YÌ¢HF       | Ó^æ    | Yãå^ÁØ æ}*^   | ŒIJG           | V^] 38æ     | JÈH      | ЦĘ       | FF€      | ĚĤ       |
| Î | P[¦cã[}c憕 Á⊞ | ‡YF€¢Î€     | Ó^æ    | Yãa^Á2 aa);*^ | ŒJG            | V^] 38æ     | FÏË      | FFÎ      | HIF      | GÈÈÌ     |
| Ï | P[¦ã[}œ‡•Á⊞É | YÌ¢IÌ       | Ó^æ    | Yãa^Á2 æ);*^  | ŒIJG           | V^] 38æ     | FIÈF     | ΀È       | FÌI      | FÈÎ      |
| ì | Öĭ{{^ÁÓ¦æ∰   | PÙÙI¢I¢Ì    | XÓ¦æ%^ | Ö[ĭà ^ÁŒ[* ^  | ŒÍ €€ÃÕ¦ ÌĎÁÜE | ΪË V^1a%and | ÎÈ€G     | FFÈI     | FFÈI     | Œ        |

#### >c]bh'@UXg'UbX'9 bZcf WIX'8 ]gd`UWYa Ybhg'f6 @' ' `.`K ]bX'@j ]b[ '7`cgYXL

|   | R[ā]c/Šamà^∣ | ŠÊÖÊT | Öã^&cąį́} | Tæt}ãĩå^ŽÇÊËdĐÂÇAĴÊæåDÂÇE•âGĐÈË |
|---|--------------|-------|-----------|---------------------------------|
| F | FÊ           | Š     | Z         | ËF€ÈH                           |
| G | GÊ           | Š     | Z         | ËF€ÈH                           |
| Н | FĚ           | Š     | Z         | ËF€Ĥ                            |
| 1 | GĚ           | Š     | Z         | ËF€ÈH                           |

#### >c]bh@UXg`UbX`9 bZcf WXX`8 ]gd`UWVa Ybhg`f6 @7`%%. K ]bX`FccZL

|   | F[ ð] 0 <sup>4</sup> Šæà^ | ŠËDÊ | Öã^&cãį} | Tæt}ãcå^ŽQÉËdDÉQGÊæåDÉQCE•âGDÈÈÈ |
|---|---------------------------|------|----------|----------------------------------|
| F | HÊ                        | Š    | Ϋ́       | ËÍ                               |
| G | FÊ                        | Š    | Ϋ́       | ËÍ                               |
| Н | I Ê                       | Š    | Ϋ́       | ËÍ                               |
| 1 | GÊ                        | Š    | Ϋ́       | ËÍ                               |

#### \_A Ya\_VYf`Dc]bh`@cUXg`f6 @7`(`.`@j`Y`@cUX`@j`]b[ Ł

|   | T^{à^¦/Êææà^∣ | Öã^&cãį} | Tæ*}ãõå^ŽÈËcá | Š[&aedā]}ŽebĒÄá |
|---|---------------|----------|---------------|-----------------|
| F | TFH           | ^        | €             | €               |
| G | TFH           | ^        | €             | €               |

#### A Ya VYf Dc]bh@cUXg f6 @7 + . 9Ufh ei U\_Y < nL

|   | T^{ à^¦ÁŠæèà^∣ | Öãi^&cãai} | Tæ*}ãĉå^ŽÊËcá       | Š[&aedā]}ŽedĒÄá |
|---|----------------|------------|---------------------|-----------------|
| F | TFH            | Z          | ËHÈHIÍ              | €               |
| G | T F€G0E        | Z          | ËHÈHÎ Í             | €               |
| Н | TÍF            | Z          | ËHÈHI Í             | €               |
|   | T F€HŒ         | Z          | <del>Ë LË I</del> Í | €               |

#### A Ya VYf Dc]bh@cUXg f6 @7 %\$`. 9Ufh.ei U\_Y < I Ł

|   | T^{à^¦ÁŠæè^∣ | Öã.^&cã∦} | Tæ*}ãĉå^ŽÊËcá         | Š[&aeeā]}ŽebŽÁá |
|---|--------------|-----------|-----------------------|-----------------|
| F | T F€HCE      | ¢         | <del>Ë IÈ</del> II Í  | €               |
| G | TÍF          | ¢         | <del>Ë LË I</del> Í   | €               |
| Н | T FH         | ¢         | <del>Ë LÈ I</del> I Í | €               |
|   | T F€G0E      | ¢         | <del>Ë LË I</del> Í   | €               |

Ü©Ü0EHÖÁX^¦•ą̃}ÁFÎÈEÈÁ‱ÃÔK4/∳^¦•ą(}|[cccÖ[,}|[æå•à/[,^¦ÁÖ^•ã'}ÁÓGÁÇEDÈHåáÁ

Úæ\*^ÁF

#### A Ya VYf '8 ]ghf ] Vi hYX '@ UXg 'f6 @' (`.`@j Y @ UX '@j ]b[ Ł

|   | T^{à^¦AŠææà^∣ | Öãi^&cãį} | ÙcækoÁTæt}ããå^Ž(àĐd∰ | ÈÒ}åÁTætੋ}ãčå^ŽàÐdÊØÈ | ÈÈÙcælo4Š[&anenā]}ŽeÉÃá | Ò}åÆŠ[&ææā[}ŽdÉÄá |
|---|---------------|-----------|----------------------|-----------------------|-------------------------|-------------------|
| F | T FH          | Ϋ́        | Ë€                   | Ë€                    | €                       | €                 |
| G | TÍF           | Ϋ́        | Ë€                   | Ë€                    | €                       | €                 |

#### A Ya VYf 8]ghf]Vi hYX @ UXg f6 @ ') . @j Y @ UX 8 YW Ł

|   | T^{à^¦ÁŠææà^∣ | Öãi^&caįį́} | ÙcæloÁTæt*}ãčå^Ž(àĐc∰ | ÈÒ}åÁTæt}ãčå^ŽàМÊ2È | ÈÙcæloÁĞ[&ænañ[}ŽedÊÄá | Ò}åÆŠ[&æa£ā[}ŽdÉÃá |
|---|---------------|-------------|-----------------------|---------------------|------------------------|--------------------|
| F | T F€Í Œ       | Ϋ́          | ËFÍ€                  | ËFÍ€                | €                      | €                  |
| G | ΤÎÌ           | Ϋ́          | ËFÍ€                  | ËFÍ€                | €                      | €                  |
| Н | T F€I Ó       | Ϋ́          | ËFÍ€                  | ËFÍ€                | €                      | €                  |
| I | TÍF           | Ϋ́          | ËFÍ€                  | ËFÍ€                | €                      | €                  |
| Í | TH            | Ϋ́          | ËFÍ€                  | ËFÍ€                | €                      | €                  |
| Î | TÌ COE        | Ϋ́          | ËFÍ€                  | ËFÍ€                | €                      | €                  |
| Ï | T FH          | Ϋ́          | ËFÍ€                  | ËFÍ€                | €                      | €                  |
| Ì | TÌHCE         | Ϋ́          | ËFÍ€                  | ËFÍ€                | €                      | €                  |

#### A Ya VYf 8 ]ghf ]Vi hYX @ UXg f6 @ \*\*. Gbck @ UXŁ

|   | T^{à^¦AŠææà^∣ | Öãi^&cãį} | Ùcæ¦cÁTæ*}ãĉå^ŽjàÐc∰ | ÈÒ}åÁTæt}ãčå^ŽjàÐo6Ê2BÌ | ÈÙcæloAŠ[&ænañ]}ŽeÉÃá | Ò}åÆĞ[&æasã[}ŽdÉÃá |
|---|---------------|-----------|----------------------|-------------------------|-----------------------|--------------------|
| F | ТЇН           | Ϋ́        | Ë€                   | Ë€€                     | €                     | €                  |
| G | TÌ€           | Ϋ́        | Ê€                   | Ë€                      | €                     | €                  |

#### A Ya VYf 8]ghf]Vi hYX @ UXg f6 @ ', `. '9 Uf h ei U\_Y JŁ

|   | T^{à^¦ÁŠææà^∣ | Öã^&cąį́} | ÙcæloÁTæt*}ãčå^ŽjàÐc∰ | ÈÒ}åÁTætੋ}ãčå^ŽàМÊ2È | ÈÙcælo∕ç[&ænañ[}ŽedÊÁá | Ò}åÆŠ[&æaaã[}ŽdÉÃá |
|---|---------------|-----------|-----------------------|----------------------|------------------------|--------------------|
| F | T FH          | Ϋ́        | ËÈÌ€                  | ËÈÌ€                 | €                      | €                  |
| G | TÍF           | Ϋ́        | ËÈÌ€                  | ËÈÌ€                 | €                      | €                  |

#### A Ya VYf 8 ]ghf ]Vi hYX @ UXg f6 @7 - . . 8 YUX @ UXŁ

|   | T^{à^¦ÁŠææà^∣ | Öã^&cãį} | Ùcæ¦oÁTæt*}ãčå^ŽàÐd⊞ | ÈÒ}åÁTætੋ}ãčå^ŽàÐdÊ2È | ÈÈÙcælo%õ[&ænañ]}ŽedÊÄá | Ò}å/ç[&ææã[}ŽdÊÃá |
|---|---------------|----------|----------------------|-----------------------|-------------------------|-------------------|
| F | T FH          | Ϋ́       | Ëĺ€                  | Ëĺ€                   | €                       | €                 |
| G | TÍF           | Ϋ́       | Ëĺ€                  | Ëĺ€                   | €                       | €                 |

#### A Ya VYf 8 ]ghf ] Vi hYX @ UXg f6 @ '% . 6 @ '& Hf Ubg ] Ybh5 f YU @ UXgŁ

|    | I^{ a^¦ASaaa^ | Oãi^&cã[} | ÚcæloÁTæt*}ãčå^ŽàÐd⊞ | ÈÒ}åÁTæt}ãčå^ŽàÐoBÉ20È | ÈÙcæ¦oÁS[&æeā]}ŽebÉÄá | Ò}åÁĞ[&æscã[}ŽdÉÃá |
|----|---------------|-----------|----------------------|------------------------|-----------------------|--------------------|
| F  | TJ€           | Z         | ËGFFÉÎ               | ËGFFÉÎ                 | €                     | Í                  |
| G  | TJH           | Z         | ËGFFĚÎ               | ËGFFËLÎ                | €                     | Í                  |
| Н  | TJI           | Z         | ËGFFËLÎ              | ËGFFËLÎ                | €                     | GÍ                 |
|    | ΤJΪ           | Z         | ËGFFÉÎ               | ËGFFËLÎ                | €                     | Í                  |
| Í  | ΤJÌ           | Z         | ËGFFËLÎ              | ËGFFËLÎ                | €                     | Í                  |
| Î  | TF€€          | Z         | ËGFFËLÎ              | ËGFFËLÎ                | €                     | GÍ                 |
| Ï  | TÌHCE         | Z         | ËGFFĚÎ               | ËGFFËLÎ                | Í                     | HÍ                 |
| ì  | T F€I Ó       | Z         | ËGFFĚÎ               | ËGFFËLÎ                | Í                     | HÍ                 |
| J  | T FI          | Z         | ËGFFËLÎ              | ËGFFËLÎ                | €                     | FÎ                 |
| F€ | T FÍ          | Z         | ËGFFÉÎ               | ËGFFÉÎ                 | €                     | FÎ                 |
| FF | T FÎ          | Z         | ËGFFĚÎ               | ËGFFÉÎ                 | €                     | FÎ                 |
| FG | ΤFΪ           | Z         | ËGFFËLÎ              | ËGFFËLÎ                | €                     | FÎ                 |
| FH | T FÌ          | Z         | ËGFFĚÎ               | ËGFFÉÎ                 | €                     | FÎ                 |
| FI | T FJ          | Z         | ËGFFÉÎ               | ËGFFËLÎ                | €                     | FÎ                 |
| FÍ | TG€           | Z         | ËGFFĚÎ               | ËGFFĚÎ                 | €                     | FÎ                 |
| FÎ | TGF           | Z         | ËGFFĚÎ               | ËGFFĚÎ                 | €                     | FÎ                 |
| FΪ | ΤHÍ           | Z         | ËGFFËLÎ              | ËGFFËLÎ                | €                     | FÎ                 |

Ü©ÜCEEHÖÁx^¦•ą[}Á;îÈEÈ Á¥¥¥¥\$2ÔH3/\•^¦•a;}|[cc=Ö[,}|[æå•a/[, ^¦ÁÖ^•a\*]ÁÓCÁÇEDÈHåáÁ

Úæ\*^ÁG

#### A Ya VYf 8 jghi jVi hYX @ UXg f6 @ '% . 6 @ '& HfUbg jYbh5 f YU @ UXgŁf7 c bhjbi YXŁ

|    | T^{à^¦ÁŠæà^∣ | Öãi^&caįį́} | ÙcæloÁTæt*}ããå^ŽjàÐc∰ | ÈÒ}åÁTætੋ}ãčå^ŽàÐdÊ2ÈÌ | ÈÙcælo%S[&æna¶}}ŽebÃá | Ò}åÆŠ[&ææã[}ŽdÉÃá |
|----|--------------|-------------|-----------------------|------------------------|-----------------------|-------------------|
| FÌ | ΤĤ           | Z           | ËGFFĚÎ                | ËGFFËLÎ                | €                     | FÎ                |
| FJ | ТНЇ          | Z           | ËGFFĚÎ                | ËGFFÉÎ                 | €                     | FÎ                |
| G€ | ΤHÌ          | Z           | ËGFFĚÎ                | ËGFFÉÎ                 | €                     | FÎ                |
| GF | TÍG          | Z           | ËGFFĚÎ                | ËGFFÉÎ                 | €                     | FÎ                |
| GG | ТІ́Н         | Z           | ËGFFĚÎ                | ËGFFÉÎ                 | €                     | FÎ                |
| GH | ΤÍΙ          | Z           | ËGFFĚÎ                | ËGFFÉÎ                 | €                     | FÎ                |
| G  | TÍÍ          | Z           | ËGFFĚÎ                | ËGFFËLÎ                | €                     | FÎ                |
| GÍ | TI           | Z           | ËÌJÈGHG               | ËLIJËGHG               | €                     | H€                |
| Ĝ  | ΤÏ           | Z           | ËÌJÈGHG               | ËLÌJÈGHG               | €                     | H€                |
| Ğ  | TF€          | Z           | ËÌJÈGHG               | ËLÌJÈGHG               | €                     | H€                |
| Ĝ  | T FH         | Z           | ËGGEËÌG               | ËGGIËËÌG               | €                     | H€                |
| GJ | TIG          | Z           | ËLÌJÈGHG              | ËLÌJÈGHG               | €                     | H€                |
| H€ | TIÍ          | Z           | ËÌJÈGHG               | ËLIJËGHG               | €                     | H€                |
| HF | TÍF          | Z           | ËGGIËËÌG              | ËGGIËËÌG               | €                     | H€                |
| HG | T FFCCE      | Z           | ËLÌJÈGHG              | ËLÌJËGHG               | €                     | H€                |

#### A Ya VYf 5 f YU @cUXg f6 @7 &. K JoX CdYb Hck YfŁ

|   | RĮą̃OÁCE | RĮą̃cÁÓ | RĮą̃Ó | RĮãjoÁÖ | Öãi^&cați}} | Öãidiãaĭ cāį}  | Tæť}ãĉå^Žj∙-á |
|---|----------|---------|-------|---------|-------------|----------------|---------------|
| F | ΙĚ       | HĚ      | HÈ    | ΙÈΕ     | Z           | U]^} ÁÙd`&č \^ | ËFÎÌĒÎ        |
| G | FĚ       | GĚ      | GÈ    | FÈ      | Z           | U]^} ÁÙd`&č \^ | ËFÎÌÊÌ        |

#### 6Ug]W@UX`7UgYg

|    | ÓŠÔÁÖ^∙&¦ājcāį}      | Ôæ <b>e</b> ^*[¦^ | ÝÁÕ¦æçãcî | ŸÁÕ¦æçãcî | ZÁÕ¦æçãcî | RĮậc | Ú[ậc | Öã⊧dãa ĭd | ₩EF^æÇT ₩ | EÙĭ¦æs8∧⊞ |
|----|----------------------|-------------------|-----------|-----------|-----------|------|------|-----------|-----------|-----------|
| F  | Õ¦æçãĉ               | ÖŠ                |           | Ë         |           |      |      |           |           |           |
| G  | YājåÁU]^}Á∕[ , ^¦    | ΥŠ                |           |           |           |      |      |           | G         |           |
| Н  | YājåÁŠãçāj*ÁÔ∥[∙^å   | ΥŠ                |           |           |           |      |      |           |           |           |
|    | Šãç^ ÁŠ[ æå ÁŠãçã) * | ŠŠ                |           |           |           |      | G    | G         |           |           |
| Í  | Šãç^AŠ[æåÅÖ^&∖       | ŠŠ                |           |           |           |      |      | Ì         |           |           |
| Î  | Ù}[, ÁŠ[æå           | ÙŠ                |           |           |           |      |      | G         |           |           |
| Ï  | Òæld@ čæl^Á₽:        | ÒŠZ               |           |           | ËG        |      |      |           |           |           |
| Ì  | Òæic@ĭæi∖^ÁX         | ÒŠŸ               |           |           |           |      |      | G         |           |           |
| J  | Ö^æåÅŠ[æå            | ÖŠ                |           |           |           |      |      | G         |           |           |
| F€ | Òæld@ĭæl^Á₽¢         | ÒŠÝ               | ËG        |           |           |      | -    |           |           |           |
| FF | Y ð) åÁÜ[[~          | Y ŠŸ              |           |           |           |      |      |           |           |           |
| FG | ÓŠÔÁGÁ/¦æ}•ã\} ÓÆ    | Ë Þ[}^            |           |           |           |      |      | HG        |           |           |

#### @cUX`7 ca V]bUhjcb`8 Yg][b

|   | Ö^∙&¦a]ca[} | ŒÙØØ | ÔÖ | Ù^¦çã&∧ | P[oÁÜ[∥^å | Ô[ å <i>Á</i> 2[¦ÈÈÈ | Y[[å | Ô[}&¦^ơ^ | Tæ•[}¦^ | OE[`{ā}``{ | Ùœa∰  ^•• | Ô[}}^&ca[i} |
|---|-------------|------|----|---------|-----------|----------------------|------|----------|---------|------------|-----------|-------------|
| F | ŠÔF         |      |    |         | Ϋ́^•      | Ϋ́^∙                 | Ÿ^∙  | Ÿ^∙      | Ÿ^∙     | Ÿ^∙        | Ϋ́^∙      | Ϋ́^∙        |
| G | ŠÔG         |      |    |         | Ϋ́^∙      | Ϋ́^∙                 | Ϋ́^∙ | Ϋ́^∙     | Ϋ́^∙    | Ϋ́^∙       | Ϋ́^∙      | Ϋ́^•        |
| Н | ŠÔHæ        |      |    |         | Ϋ́^∙      | Ϋ́^∙                 | Ϋ́^• | Ϋ́^∙     | Ÿ^∙     | Ϋ́^∙       | Ϋ́^∙      | Ϋ́^•        |
| 1 | ŠÔHà        |      |    |         | Ϋ́^∙      | Ϋ́^∙                 | Ϋ́^• | Ϋ́^∙     | Ϋ́^∙    | Ϋ́^∙       | Ϋ́^∙      | Ϋ́^∙        |
| Í | ŠÔI         |      |    |         | Ÿ^∙       | Ϋ́^∙                 | Ϋ́^• | Ϋ́^∙     | Ÿ^∙     | Ϋ́^∙       | Ϋ́^∙      | Ϋ́^•        |
| Î | ŠÔÍ         |      |    |         | Ϋ́^∙      | Ϋ́^∙                 | Ϋ́^∙ | Ϋ́^∙     | Ϋ́^∙    | Ϋ́^∙       | Ϋ́^∙      | Ϋ́^∙        |
| Ï | ŠÔÎ ĐÔ¢     |      |    |         | Ϋ́^∙      | Ϋ́^∙                 | Ϋ́^• | Ϋ́^∙     | Ϋ́^∙    | Ϋ́^∙       | Ϋ́^∙      | Ϋ́^∙        |
| Ì | ŠÔÎED:      |      |    |         | Ϋ́^∙      | Ϋ́^∙                 | Ÿ^∙  | Ϋ́^∙     | Ϋ́^∙    | Ϋ́^∙       | Ϋ́^∙      | Ϋ́^∙        |
| J | ŠÔÏ ĐÔ¢     |      |    |         | Ϋ́^∙      | Ϋ́^∙                 | Ÿ^∙  | Ÿ^∙      | Ϋ́^∙    | Ϋ́^∙       | Ϋ́^∙      | Ϋ́^∙        |

ÜQÜCEEHÖÁX^¦•ąį}ÁrîìÈEÈE #######2ÔK&/V+^¦•ą(}|(0ccÜ[,}}|(aså•a/[,^¦ÁÖ^•ã\*}AÓCÁÇCENÈEHåáÁ

Úæ\*^Áң

CE;¦ÁFJÉZG€GG ÌKHGÁÚT Ô@&&∧åÁÓ^K ´´´´

#### @UX7ca V]bUhjcb8Yg][bf17cbhjbiYXŁ

|    | Ö^∙&¦ājcaji} | ŒÙØØ | ÔÖ | Ù^¦çã&∧ | P[oÁÜ[∥^å | Ô[ åÁ2[¦ⅲ兰 | Y[[å | Ô[}&¦^ơ^ | Tæ•[}¦^ | OĘ~{ā),~{ | Ùœa∰, ^•• | Ô[}}^&ca[i} |
|----|--------------|------|----|---------|-----------|------------|------|----------|---------|-----------|-----------|-------------|
| F€ | šôï Đì:      |      |    |         | Ϋ́∧∙      | Ϋ́^∙       | Ϋ́^∙ | Ÿ^∙      | Ϋ́∧∙    | Ϋ́∧∙      | Ϋ́∧∙      | Ϋ́^∙        |
| FF | Ù^ -ÁY ^∄@c  |      |    |         | Ϋ́^∙      | Ÿ^∙        | Ϋ́^• | Ÿ^∙      | Ÿ^∙     | Ÿ^∙       | ¥∧∙       | Ϋ́^•        |
| FG | ÖŠ           |      |    |         | Ϋ́^•      | Ϋ́^∙       | Ϋ́^• | Ÿ^∙      | Ÿ^∙     | Ÿ^∙       | ¥∧∙       | Ϋ́^•        |
| FH | ÙŠ           |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ϋ́^∙ | Ÿ^∙      | Ϋ́^∙    | Ϋ́^∙      | Ϋ́^∙      | Ϋ́^∙        |
| FI | ΥŠF          |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ϋ́^∙ | Ÿ^∙      | Ÿ^∙     | Ϋ́^∙      | Ϋ́^∙      | Ϋ́^∙        |
| FÍ | Y ŠG         |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ϋ́^∙ | Ϋ́^∙     | Ϋ́^∙    | Ÿ^∙       | Ϋ́^∙      | Ϋ́^∙        |
| FÎ | ŠŠ           |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ϋ́^∙ | Ÿ^∙      | Ϋ́^∙    | Ÿ^∙       | Ϋ́^∙      | Ÿ^•         |
| FΪ | ÒF           |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ÿ^∙  | Ϋ́^∙     | Ϋ́^∙    | Ϋ́^∙      | Ϋ́^•      | Ϋ́^∙        |
| FÌ | ÒG           |      |    |         | Ϋ́^∙      | Ϋ́^∙       | Ÿ^∙  | Ÿ^∙      | Ÿ^∙     | Ϋ́^∙      | Ϋ́^•      | Ϋ́^∙        |

ÜŴŒËHÖÁX^¦•ąį}ÁrîÈEÈ Á¥¥¥¥\$\$Ôk\$/v^¦•ą(}|[ccsö[,}|| æå•à/[,^¦ÁÔ^•ã}AÓOA¢CIÈHåáA

Úæ\*^Á

| Imagineering Inc. | Tower | SK - 1<br>Apr 19, 2022 at 8:33 PM<br>Tower Design B2 (2).r3d |
|-------------------|-------|--------------------------------------------------------------|

Appendix C: Alternative C

### Wind Calcs for Design C (Fully Enclosed Structure)

Assumptions Risk Category 2 Building Class 2 Exposure C Roughness C Wind Speed: 160 mph Roof: Flat



FIGURE 27.5-1 Main Wind Force Resisting System, Part 2 [h ≤ 160 ft (h ≤ 48.8 m)]: Enclosed Simple Diaphragm Buildings, Wind Pressures, Walls and Roof



FIGURE 26.5-1A Basic Wind Speeds for Risk Category II Buildings a

: design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10m) erpolation between contours is permitted. d coastal areas outside the last contour shall use the last wind speed c' ous terrain, gorges, ocean promontories, and special wind regions she ds correspond to approximately a 7% probability of exceedance  $\dot{r}$  0 years).

| Table 27.5-1 (Continued). Main Wind Fo | rce Resisting System, Part 2 [h; | ≤ 160 ft ( <i>h</i> ≤ 48.8 m)]: Enclosed | Simple Diaphragm Bu |
|----------------------------------------|----------------------------------|------------------------------------------|---------------------|
|                                        |                                  |                                          |                     |

Exposure C

|      |                |      |      |      |      |      |      |      |      |      | _    |      |      | V (mi/ł | ı)   |      |       |       |       |    |
|------|----------------|------|------|------|------|------|------|------|------|------|------|------|------|---------|------|------|-------|-------|-------|----|
|      | Along-         | 110  |      |      | 115  |      | 120  |      | 130  |      |      | 140  |      |         | 160  |      |       |       |       |    |
|      | wind Net L/B   |      |      | L/B  |      |      | L/B  |      | L/B  |      |      | L/B  |      |         | L/B  |      |       |       |       |    |
| (ft) | Pressure       | 0.5  | 1    | 2    | 0.5  | 1    | 2    | 0.5  | 1    | 2    | 0.5  | 1    | 2    | 0.5     | 1    | 2    | 0.5   | 1     | 2     |    |
| 160  | p <sub>h</sub> | 49.2 | 48.7 | 43.7 | 54.5 | 53.8 | 48.3 | 60.0 | 59.3 | 53.3 | 72.2 | 71.1 | 64.1 | 85.8    | 84.3 | 76.1 | 117.4 | 115.0 | 103.9 | 1  |
|      | $p_0$          | 36.1 | 35.7 | 30.0 | 40.0 | 39.5 | 33.2 | 44.1 | 43.5 | 36.6 | 53.0 | 52.2 | 44.0 | 62.9    | 61.9 | 52.3 | 86.2  | 84.4  | 71.5  | 1  |
| 150  | p <sub>h</sub> | 48.0 | 47.5 | 42.6 | 53.0 | 52.4 | 47.1 | 58.4 | 57.7 | 51.9 | 70.1 | 69.2 | 62.3 | 83.3    | 82.0 | 74.0 | 113.8 | 111.7 | 101.0 | 1  |
|      | $p_0$          | 35.5 | 35.2 | 29.6 | 39.3 | 38.8 | 32.7 | 43.3 | 42.8 | 36.1 | 52.0 | 51.3 | 43.3 | 61.7    | 60.7 | 51.4 | 84.3  | 82.8  | 70.2  | 1  |
| 140  | p <sub>h</sub> | 46.6 | 46.2 | 41.4 | 51.5 | 51.0 | 45.8 | 56.7 | 56.1 | 50.4 | 68.1 | 67.2 | 60.6 | 80.7    | 79.6 | 71.8 | 110.2 | 108.3 | 98.0  | 1  |
|      | $p_0$          | 34.9 | 34.6 | 29.1 | 38.6 | 38.2 | 32.2 | 42.4 | 42.0 | 35.5 | 50.9 | 50.3 | 42.6 | 60.4    | 59.5 | 50.6 | 82.4  | 81.0  | 68.9  | 1  |
| 130  | p <sub>h</sub> | 45.3 | 45.0 | 40.2 | 50.0 | 49.6 | 44.5 | 55.0 | 54.5 | 48.9 | 65.9 | 65.2 | 58.7 | 78.1    | 77.1 | 69.6 | 106.4 | 104.7 | 94.8  | 1  |
|      | $p_0$          | 34.3 | 34.0 | 28.7 | 37.8 | 37.5 | 31.7 | 41.6 | 41.2 | 34.9 | 49.9 | 49.3 | 41.9 | 59.1    | 58.3 | 49.6 | 80.5  | 79.2  | 67.6  | 1  |
| 120  | p <sub>h</sub> | 43.9 | 43.6 | 39.0 | 48.5 | 48.1 | 43.1 | 53.3 | 52.8 | 47.4 | 63.8 | 63.1 | 56.8 | 75.4    | 74.6 | 67.3 | 102.6 | 101.1 | 91.5  | 1  |
|      | $p_0$          | 33.6 | 33.4 | 28.2 | 37.1 | 36.8 | 31.1 | 40.7 | 40.4 | 34.3 | 48.8 | 48.3 | 41.1 | 57.7    | 57.1 | 48.7 | 78.5  | 77.3  | 66.2  | 1  |
| 110  | p <sub>h</sub> | 42.5 | 42.3 | 37.7 | 46.9 | 46.6 | 41.6 | 51.5 | 51.1 | 45.8 | 61.5 | 61.0 | 54.8 | 72.7    | 72.0 | 64.8 | 98.6  | 97.3  | 88.1  | 1  |
|      |                |      | ~~~~ |      |      |      |      |      |      |      |      |      |      |         |      |      |       |       |       | Ι. |

|     | $p_0$                 | 32.9 | 32.8 | 27.7 | 36.3 | 36.1 | 30.6 | 39.9              | 39.6              | 33.6 | 47.7               | 47.3 | 40.3 | 56.3 | 55.8              | 47.6        | 76.4              | 75.4 | 64.7 | 1 |
|-----|-----------------------|------|------|------|------|------|------|-------------------|-------------------|------|--------------------|------|------|------|-------------------|-------------|-------------------|------|------|---|
| 100 | <i>p</i> <sub>h</sub> | 41.1 | 40.9 | 36.4 | 45.2 | 45.0 | 40.1 | 49.6              | 49.3              | 44.1 | 59.2               | 58.8 | 52.7 | 69.8 | 69.3              | 62.3        | 94.5              | 93.5 | 84.5 | 1 |
|     | $p_0$                 | 32.3 | 32.1 | 27.2 | 35.5 | 35.4 | 30.0 | 39.0              | 38.8              | 33.0 | 46.5               | 46.2 | 39.4 | 54.9 | 54.4              | 46.6        | 74.2              | 73.4 | 63.2 |   |
| 90  | <i>p</i> <sub>h</sub> | 39.6 | 39.4 | 35.0 | 43.5 | 43.3 | 38.5 | 47.7              | 47.5              | 42.3 | 56.8               | 56.5 | 50.6 | 66.9 | 66.5              | 59.7        | 90.3              | 89.4 | 80.8 | 1 |
|     | $p_0$                 | 31.6 | 31.5 | 26.6 | 34.7 | 34.6 | 29.4 | 38.1              | 37.9              | 32.3 | 45.4               | 45.1 | 38.5 | 53.4 | 53.1              | 45.5        | 72.1              | 71.4 | 61.6 |   |
| 80  | <b>p</b> h            | 38.0 | 37.9 | 33.5 | 41.8 | 41.6 | 36.9 | <mark>45.8</mark> | <mark>45.6</mark> | 40.5 | <mark>54.</mark> 4 | 54.2 | 48.3 | 63.9 | <mark>63.6</mark> | <u>56.9</u> | <mark>85.9</mark> | 85.3 | 76.8 | 1 |
|     | Po                    | 30.9 | 30.8 | 26.1 | 33.9 | 33.8 | 28.7 | 37.2              | 37.1              | 31.5 | 44.2               | 44.0 | 37.6 | 52.0 | 51.7              | 44.3        | 69.8              | 69.3 | 59.8 |   |
| 70  | <i>D</i> <sub>b</sub> | 36.4 | 36.3 | 32.0 | 39.9 | 39.9 | 35.2 | 43.7              | 43.6              | 38.6 | 51.9               | 51.7 | 45.9 | 60.8 | 60.6              | 54.0        | 81.4              | 81.0 | 72.7 | 1 |



Table 27.5-2

|      |                     |      |       |       | 160   |       |       |
|------|---------------------|------|-------|-------|-------|-------|-------|
| h    | Roof Slope          | Load |       |       | Zone  |       |       |
| (ft) | Kool Slope          | Case | 1     | 2     | 3     | 4     | 5     |
| 100  | Flat < 2:12 (9.46°) | 1    | NA    | NA    | -74.7 | -66.6 | -54.6 |
|      |                     | 2    | NA    | NA    | 0.0   | 0.0   | 0.0   |
|      | 3:12 (14.0°)        | 1    | -73.3 | -52.8 | -74.7 | -66.6 | -54.6 |
|      |                     | 2    | 10.6  | -14.9 | 0.0   | 0.0   | 0.0   |
|      | 4:12 (18.4°)        | 1    | -60.3 | -48.6 | -74.7 | -66.6 | -54.6 |
|      |                     | 2    | 20.9  | -21.4 | 0.0   | 0.0   | 0.0   |
|      | 5:12 (22.6°)        | 1    | -48.4 | -48.6 | -74.7 | -66.6 | -54.6 |
|      |                     | 2    | 27.8  | -23.3 | 0.0   | 0.0   | 0.0   |
|      | 6:12 (26.6°)        | 1    | -38.8 | -48.6 | -74.7 | -66.6 | -54.6 |
|      |                     | 2    | 30.7  | -23.3 | 0.0   | 0.0   | 0.0   |
|      | 9:12 (36.9°)        | 1    | -22.5 | -48.6 | -74.7 | -66.6 | -54.6 |
|      |                     | 2    | 36.7  | -23.3 | 0.0   | 0.0   | 0.0   |
|      | 12:12 (45.0°)       | 1    | -12.7 | -48.6 | -74.7 | -66.6 | -54.6 |
|      |                     | 2    | 36.7  | -23.3 | 0.0   | 0.0   | 0.0   |
| 90   | Flat < 2:12 (9.46°) | 1    | NA    | NA    | -73.1 | -65.2 | -53.4 |
|      |                     | 2    | NA    | NA    | 0.0   | 0.0   | 0.0   |
|      | 3:12 (14.0°)        | 1    | -71.7 | -51.6 | -73.1 | -65.2 | -53.4 |
|      |                     | 2    | 10.3  | -14.5 | 0.0   | 0.0   | 0.0   |
|      | 4:12 (18.4°)        | 1    | -59.0 | -47.6 | -73.1 | -65.2 | -53.4 |
|      |                     | 2    | 20.4  | -20.9 | 0.0   | 0.0   | 0.0   |
|      | 5:12 (22.6°)        | 1    | -47.3 | -47.6 | -73.1 | -65.2 | -53.4 |
|      |                     | 2    | 27.2  | -22.8 | 0.0   | 0.0   | 0.0   |
|      | 6:12 (26.6°)        | 1    | -38.0 | -47.6 | -73.1 | -65.2 | -53.4 |
|      |                     | 2    | 30.0  | -22.8 | 0.0   | 0.0   | 0.0   |
|      | 9:12 (36.9°)        | 1    | -22.0 | -47.6 | -73.1 | -65.2 | -53.4 |
|      |                     | 2    | 35.9  | -22.8 | 0.0   | 0.0   | 0.0   |
|      | 12:12 (45.0°)       | 1    | -12.4 | -47.6 | -73.1 | -65.2 | -53.4 |
|      |                     | 2    | 35.9  | -22.8 | 0.0   | 0.0   | 0.0   |
| 80   | Flat < 2:12 (9.46°) | 1    | NA    | NA    | -71.3 | -63.6 | -52.1 |
|      |                     | 2    | NA    | NA    | 0.0   | 0.0   | 0.0   |
|      | 3:12 (14.0°)        | 1    | -70.0 | -50.4 | -71.3 | -63.6 | -52.1 |
## Final Answer:



#### STANDARD LOAD EACH LEVEL

|            |    |    |      |      |     |      |                | UPLIFT | SHE/       | AR  |
|------------|----|----|------|------|-----|------|----------------|--------|------------|-----|
| Level      | h  | I  | Fx   | Fx/2 |     | 0.T. | Wall DL R.O.T. | 0.6D+0 | ).7E (0.7E | E)  |
|            | ft | I  | kips | kips |     | kips | kips           | kips   | plf        |     |
| Roof       |    | 64 | 10.8 |      | 5.4 | 2.9  | 2.             | 9      | -0.3       | 126 |
| Main Floor |    | 48 | 13.3 |      | 6.7 | 9.3  | 2.             | 9      | -3.1       | 281 |
| Store 3    |    | 32 | 6.0  |      | 3.0 | 17.3 | 2.             | 9      | -6.9       | 351 |
| Store 2    |    | 16 | 3.0  |      | 1.5 | 26.2 | 2.             | 9 -:   | 11.4       | 386 |
| Store 1    |    | 0  | 0.0  |      | 0.0 | 26.2 | 0.             | 0      |            |     |

#### STORAGE LOAD EXTRA LEVELS

|            |    |    |      |      |     |      |      |         |        | UPLIFT | 2    | SHEAR  |     |
|------------|----|----|------|------|-----|------|------|---------|--------|--------|------|--------|-----|
| Level      | h  | 1  | Fx   | Fx/2 |     | 0.T. |      | Wall DL | R.O.T. | 0.6D+0 | ).7E | (0.7E) |     |
|            | ft | 1  | kips | kips |     | kips |      | kips    |        | kips   |      | plf    |     |
| Roof       |    | 64 | 11.9 |      | 6.0 |      | 3.2  |         | 2.9    |        | -0.5 |        | 139 |
| Main Floor |    | 48 | 14.8 |      | 7.4 |      | 10.3 |         | 2.9    |        | -3.7 |        | 311 |
| Store 3    |    | 32 | 11.2 |      | 5.6 |      | 20.4 |         | 2.9    |        | -9.1 |        | 442 |
| Store 2    |    | 16 | 5.6  |      | 2.8 |      | 32.0 |         | 2.9    | -:     | 15.5 |        | 508 |
| Store 1    |    | 0  | 0.0  |      | 0.0 |      | 32.0 |         | 0.0    |        |      |        |     |

#### STANDARD (Stage 2)

|            |    |    |      |      |      |      |      |         |         | UPLIF | Т     |             |            |
|------------|----|----|------|------|------|------|------|---------|---------|-------|-------|-------------|------------|
| Level      | h  |    | Fx   | Fx/2 |      | 0.T. |      | Wall DI | LR.O.T. | 0.6D+ | 0.7E  | Shear (0.7E | )          |
|            | ft |    | kips | kips |      | kips |      | kips    | 1       | kips  |       | plf         |            |
| Roof       |    | 80 | 24.4 | ,    | 12.2 |      | 6.5  |         | 2.9     |       | -2.8  | 28          | 35         |
| Main Floor |    | 64 | 32.2 |      | 16.1 |      | 21.6 |         | 2.9     |       | -11.7 | 66          | 50         |
| Store 3    |    | 48 | 16.4 |      | 8.2  |      | 41.1 |         | 2.9     |       | -23.6 | 85          | <u>5</u> 1 |
| Store 2    |    | 32 | 10.9 |      | 5.5  |      | 63.4 |         | 2.9     |       | -37.5 | 97          | 78         |
| Store 1    |    | 16 | 50.6 |      | 25.3 |      | 99.3 |         | 2.9     |       | -60.8 | 156         | 58         |

#### STORAGE (Stage 2)

|            |    |    |      |      |      |       |            |      | UPLIFT    |              |
|------------|----|----|------|------|------|-------|------------|------|-----------|--------------|
| Level      | h  | F  | x    | Fx/2 | 0.T. |       | Wall DL R. | D.T. | 0.6D+0.7E | Shear (0.7E) |
|            | ft | ŀ  | kips | kips | kips |       | kips       |      | kips      | plf          |
| Roof       |    | 80 | 23.6 | 11.  | 8    | 6.3   |            | 2.9  | -2.7      | 1843         |
| Main Floor |    | 64 | 31.1 | 15.  | 5    | 20.9  |            | 2.9  | -11.2     | 2206         |
| Store 3    |    | 48 | 26.6 | 13.  | 3    | 42.6  |            | 2.9  | -24.6     | 2517         |
| Store 2    |    | 32 | 17.8 | 8.   | Э    | 69.0  |            | 2.9  | -41.4     | 2724         |
| Store 1    |    | 16 | 48.8 | 24.  | 4 :  | 108.4 |            | 2.9  | -67.3     | 3294         |

|            |       |      | c    | ηz =        | 60.03412 | psf         |           |        |
|------------|-------|------|------|-------------|----------|-------------|-----------|--------|
|            |       |      | k    | р =         | 66.3377  | psf         |           |        |
| WIND LOAD  | CHECK |      | ١    | V=          | 151      | mph         |           |        |
|            |       |      |      |             |          |             | UPLIFT    | SHEAR  |
| Level      | h     | Fx   | F    | Fx/2        | 0.T.     | Wall DL R.0 | 0.6D+0.6W | (0.6W) |
|            | ft    | kips | k    | <b>kips</b> | kips     | kips        | kips      | plf    |
| Roof       |       | 80   | 15.9 | 8.0         | 4.2      | 2.9         | -0.8      | 186    |
| Main Floor |       | 64   | 31.8 | 15.9        | 17.0     | 2.9         | -6.7      | 557    |
| Store 3    |       | 48   | 31.8 | 15.9        | 38.2     | 2.9         | -17.7     | 929    |
| Store 2    |       | 32   | 31.8 | 15.9        | 67.9     | 2.9         | -33.8     | 1300   |
| Store 1    |       | 16   | 31.8 | 15.9        | 106.1    |             | -56.8     | 1672   |

#### Treehouse (Storage Load) Environmental Loads

| Site Paran                     | neters              |                |                                  |                 |                |                     |                    |            |                 |                 |                 |
|--------------------------------|---------------------|----------------|----------------------------------|-----------------|----------------|---------------------|--------------------|------------|-----------------|-----------------|-----------------|
| Occupancy                      |                     | 11             | Table 1                          | .5-1            | Cod            | e Notes:            |                    |            |                 |                 |                 |
| Importance Factor              | l <sub>e</sub>      | 1.00           | Table 1                          | .5-2            |                |                     | Using §            | 11.4.8 E   | xcpt. 2         |                 |                 |
| Site Class                     |                     | D-             | § 11.4.                          | 3, Chapte       | er 20          |                     |                    |            |                 |                 |                 |
|                                |                     | Use D- if      | no soil in                       | vestigation     | has beer       | n performe          | d                  |            |                 |                 |                 |
| Mapped MCE <sub>R</sub> 5% Dam | ped Para            | ameters        |                                  |                 |                |                     |                    |            |                 |                 |                 |
| 0.2s-period Accel.             | Ss                  | 1.50           | g                                | § 11.4.2        | 2,4            |                     | S <sub>ms</sub>    | 1.80       | g               | Eq. 11.4        | 1-1             |
| 1s-period Accel.               | S <sub>1</sub>      | 0.60           | g                                | § 11.4.2        | 2              |                     | S <sub>m1</sub>    | 1.02       | g               | Eq. 11.4        | 1-2             |
| Long Trans. Period             | ΤL                  | 16             | S                                | Fig. 22-        | 14, -15        |                     |                    |            |                 |                 |                 |
| 0.2s-period Site Coeff.        | Fa                  | 1.20           |                                  | Table 1         | 1.4-1          |                     | S <sub>ds</sub>    | 1.20       | g               | Eq. 11.4        | 1-3             |
| 1s-period Site Coeff.          | Fv                  | 1.70           |                                  | Table 1         | 1.4-2          |                     | S <sub>d1</sub>    | 0.68       | g               | Eq. 11.4        | 1-4             |
| Seis. Design Category          | SDC                 | D              | _                                | § 11.6          |                |                     |                    |            |                 |                 |                 |
|                                |                     |                | -                                |                 |                |                     |                    |            |                 |                 |                 |
| E.L.F Proc                     | edure               | ]              |                                  |                 |                |                     |                    |            |                 |                 |                 |
| Charles Trans                  | 9 12.8              | the ave        |                                  |                 |                |                     | Sa                 |            | Sa · Ie/R       | •               | Design          |
| Structure Type                 | All O               | thers          |                                  | Table 1         | 224            | 14                  |                    |            |                 |                 |                 |
| Response Wod. Factor           | K<br>L              | 6.5            | <i>c</i> .                       | Table 1.        | 2.2-1          | (j2                 |                    |            |                 |                 |                 |
| Structural Height              | n <sub>n</sub>      | 65             | ft                               | <b>T</b>     4  |                | ອ<br>ເອີ 1.2        |                    |            |                 |                 |                 |
|                                | C <sub>t</sub>      | 0.02           |                                  | Table 1.        | 2.8-2          | S uc                |                    |            |                 |                 |                 |
|                                | х<br><del>т</del>   | 0.75           |                                  | Table 1.        | 2.8-2          | 1.0 gt              |                    |            |                 |                 |                 |
| Structure Period               | I <sub>a</sub><br>T | 0.458          | S                                | Eq. 12.8        | 3-7            | elei                |                    |            |                 |                 |                 |
|                                | I <sub>0</sub>      | 0.113          | S                                |                 |                | ပ္ပ 0.8<br>A        |                    |            |                 |                 |                 |
|                                | Τs                  | 0.567          | S                                |                 |                | es o e              |                    |            |                 |                 |                 |
|                                | -                   |                |                                  |                 |                | Jod                 |                    |            |                 |                 |                 |
| Seismic Resp. Coeff.           | C <sub>s2</sub>     | 0.185          |                                  | Eq. 12.8        | 3-2            | Seg 0.4             |                    |            |                 |                 |                 |
|                                | C <sub>s3</sub>     | 0.228          |                                  | Eq. 12.8        | 3-3            | tra                 |                    |            |                 |                 |                 |
|                                | C <sub>s4</sub>     | 7.99           |                                  | Eq. 12.8        | 3-4            | 0.2                 |                    | ••••••     |                 |                 |                 |
|                                | C <sub>s5</sub>     | 0.053          |                                  | Eq. 12.8        | 3-5            | <u>S</u>            |                    | ••••       | •••••           | ••••••          |                 |
| <b>.</b>                       | C <sub>s6</sub>     | 0.046          |                                  | Eq. 12.8        | 3-6            | 0.0                 |                    | 5 1 0      | 1 5             | 2.0             | 25 30           |
| Design C <sub>s</sub>          | C <sub>s</sub>      | 0.185          | =                                | § 12.8.1        | 1.1            | (                   | 5.0 0              | 5 1.0      | L.J<br>Doriod T | 2.0             | 2.5 5.0         |
|                                |                     |                |                                  | § 11.4.8        |                | _                   |                    |            | Periou i        | (5)             |                 |
|                                |                     |                |                                  |                 |                | N                   | ΟΤΕ ΤΟ Ι           | JSER       |                 |                 |                 |
| Structural Period Exp.         | k                   | 1              |                                  | § 12.8.3        |                | U                   | nused ro           | ws may     | be rem          | oved by         |                 |
| Seismic Weight                 | W                   | 236            | kip                              | § 12.7.2        | _              | e                   | xtending           | the Exce   | el Table        | object          |                 |
| Seismic Base Shear             | V                   | 44             | kip                              | Eq. 12.8        | 3-1            | us                  | sing the g         | grip in th | ie botto        | om right.       |                 |
|                                | Design              | Forces         |                                  |                 |                |                     |                    |            | Diaphra         | agm Loa         | ds              |
|                                | kip                 | ft             |                                  |                 | kip            | kip                 | kip                |            | kip             | kip             | kip             |
| Level                          | w <sub>x</sub>      | h <sub>x</sub> | w <sub>x</sub> ·h <sub>x</sub> * | C <sub>vx</sub> | F <sub>x</sub> | V <sub>x</sub> LRFD | V <sub>x</sub> ASD | -          | ΣFi             | Σw <sub>i</sub> | F <sub>px</sub> |
| Roof                           | 37                  | 64             | 2350                             | 0.274           | 11.92          | 11.9                | 8.3                |            | 11.9            | 37              | 12              |
| Main Floor                     | 61                  | 48             | 2911                             | 0.339           | 14.76          | 26.7                | 18.7               |            | 26.7            | 97              | 17              |
| Store 3                        | 69                  | 32             | 2213                             | 0.258           | 11.22          | 37.9                | 26.5               |            | 37.9            | 167             | 17              |
| Store 2                        | 69                  | 16             | 1107                             | 0.129           | 5.612          | 43.5                | 30.5               |            | 43.5            | 236             | 17              |
| Store 1                        | 0                   | 0              | 0                                | 0.000           | 0              | 43.5                | 30.5               |            | 43.5            | <u>2</u> 36     | 0               |
| Σ                              | 236                 |                | 9E+03                            | 1.00            | 44             |                     |                    |            |                 |                 |                 |

#### Treehouse (Storage Load) Environmental Loads

| Site Param                     | neters                    |                |                                             |                 |                     |                     |                        |              |           |                 |                      |       |
|--------------------------------|---------------------------|----------------|---------------------------------------------|-----------------|---------------------|---------------------|------------------------|--------------|-----------|-----------------|----------------------|-------|
| Occupancy                      |                           | - 11           | Table 1                                     | .5-1            | Cod                 | e Notes:            |                        |              |           |                 |                      |       |
| Importance Factor              | l <sub>e</sub>            | 1.00           | Table 1                                     | .5-2            |                     |                     | Using §                | 11.4.8 E     | xcpt. 2   |                 |                      |       |
| Site Class                     |                           | D-             | § 11.4.                                     | 3, Chapte       | er 20               |                     |                        |              |           |                 |                      |       |
|                                |                           | Use D- if      | no soil inv                                 | vestigation     | has beer            | n performe          | d                      |              |           |                 |                      |       |
| Mapped MCE <sub>R</sub> 5% Dam | oed Para                  | ameters        |                                             |                 |                     |                     |                        |              |           |                 |                      |       |
| 0.2s-period Accel.             | Ss                        | 1.50           | g                                           | § 11.4.2        | 2,4                 |                     | <b>S</b> <sub>ms</sub> | 1.80         | g         | Eq. 11.4        | 4-1                  |       |
| 1s-period Accel.               | S <sub>1</sub>            | 0.60           | g                                           | § 11.4.2        | ?                   |                     | S <sub>m1</sub>        | 1.02         | g         | Eq. 11.4        | 1-2                  |       |
| Long Trans. Period             | ΤL                        | 16             | S                                           | Fig. 22-        | 14, -15             |                     |                        |              |           |                 |                      |       |
| 0.2s-period Site Coeff.        | $\mathbf{F}_{\mathbf{a}}$ | 1.20           |                                             | Table 1.        | 1.4-1               |                     | S <sub>ds</sub>        | 1.20         | g         | Eq. 11.4        | 4-3                  |       |
| 1s-period Site Coeff.          | Fv                        | 1.70           |                                             | Table 1.        | 1.4-2               |                     | $S_{d1}$               | 0.68         | g         | Eq. 11.4        | 4-4                  |       |
| Seis. Design Category          | SDC                       | D              | -                                           | § 11.6          |                     |                     |                        |              |           |                 |                      |       |
| -                              |                           | 1              | -                                           |                 |                     |                     |                        |              |           |                 |                      |       |
| E.L.F Proc                     | <u>edure ه 12.8</u>       |                |                                             |                 |                     |                     |                        |              |           |                 |                      |       |
| Structure Type                 | All o                     | thers          |                                             |                 |                     |                     | Sa                     | ••••••       | Sa · Ie/R | *               | Design               |       |
| Response Mod. Factor           | R                         | 5              |                                             | Table 1.        | 2.2-1               | 1.4                 |                        |              |           |                 |                      |       |
| Structural Height              | h                         | 65             | ft                                          |                 |                     | (g)                 |                        |              |           |                 |                      |       |
| Ū                              | <br>С,                    | 0.02           |                                             | Table 1.        | 2.8-2               | es 1.2              |                        | $\mathbf{h}$ |           |                 |                      |       |
|                                | x                         | 0.75           |                                             | Table 1         | 2.8-2               | uoi 1 0             |                        |              |           |                 |                      |       |
| Structure Period               | T,                        | 0.458          | s                                           | Ea. 12.8        | 3-7                 | erat                |                        |              |           |                 |                      |       |
|                                | Τ                         | 0.113          | s                                           | ,               |                     | 8.0 C               |                        |              |           |                 |                      |       |
|                                | T,                        | 0.567          | s                                           |                 |                     | e Ac                |                        |              |           |                 |                      |       |
|                                | 5                         |                |                                             |                 |                     | Suo 0.6             |                        |              |           |                 |                      |       |
| Seismic Resp. Coeff.           | C.,                       | 0.240          |                                             | Eg. 12.8        | 3-2                 | esp                 |                        |              |           |                 |                      |       |
| •                              | C.3                       | 0.297          |                                             | Ea. 12.8        | 3-3                 | <u>8</u> 0.4        |                        |              |           |                 |                      |       |
|                                | C.4                       | 10.38          |                                             | Ea. 12.8        | 3-4                 | s o 2               | <i></i>                | ···          |           |                 |                      |       |
|                                | C,5                       | 0.053          |                                             | Eg. 12.8        | 3-5                 | Spe                 | /                      | ••••         | ·····     |                 |                      |       |
|                                | C.6                       | 0.06           |                                             | Eg. 12.8        | 8-6                 | 0.0                 |                        |              |           |                 | •••••                | ••••• |
| Design C <sub>s</sub>          | Ċ                         | 0.240          |                                             | ,<br>§ 12.8.1   | 1.1                 | C                   | 0.0 0.                 | 5 1.0        | 1.5       | 2.0             | 2.5                  | 3.0   |
| <b>C</b>                       | 5                         |                | •                                           | § 11.4.8        |                     |                     |                        |              | Period T  | - (s)           |                      |       |
|                                |                           |                |                                             |                 |                     | N                   | ΟΤΕ ΤΟ                 | USER         |           |                 |                      |       |
| Structural Period Exp.         | k                         | 1              |                                             | § 12.8.3        |                     | U                   | nused ro               | ws may       | be rem    | oved by         |                      |       |
| Seismic Weight                 | W                         | 616            | kip                                         | § 12.7.2        |                     | e>                  | ktending               | the Exce     | el Table  | object          |                      |       |
| Seismic Base Shear             | v                         | 148            | kip                                         | Eq. 12.8        | 8-1                 | us                  | sing the               | grip in th   | ne botto  | om right.       |                      |       |
|                                | Design                    | Forces         |                                             |                 |                     |                     |                        |              | Diaphra   | agm Loa         | ds                   |       |
|                                | kip                       | ft             |                                             |                 | kip                 | kip                 | kip                    |              | ,<br>kip  | kip             | kip                  |       |
| Level                          | w <sub>x</sub>            | h <sub>x</sub> | w <sub>x</sub> ·h <sub>x</sub> <sup>k</sup> | C <sub>vx</sub> | ,<br>F <sub>x</sub> | V <sub>x</sub> LRFD | v <sub>x</sub> ASD     | -            | ΣFi       | Σw <sub>i</sub> | ,<br>F <sub>px</sub> |       |
| Roof                           | 37                        | 80             | 2938                                        | 0.159           | 23.56               | 23.6                | 16.5                   |              | 23.6      | 37              | 18                   | -     |
| Main Floor                     | 61                        | 64             | 3881                                        | 0.210           | 31.13               | 54.7                | 38.3                   |              | 54.7      | 97              | 29                   |       |
| Store 3                        | 69                        | 48             | 3320                                        | 0.180           | 26.63               | 81.3                | 56.9                   |              | 81.3      | 167             | 33                   |       |
| Store 2                        | 69                        | 32             | 2213                                        | 0.120           | 17.75               | 99.1                | 69.3                   |              | 99.1      | 236             | 29                   |       |
| Store 1                        | 381                       | 16             | 6090                                        | 0.330           | 48.85               | 147.9               | 103.5                  |              | 147.9     | 616             | 91                   |       |
| Σ                              | 616                       |                | 2E+04                                       | 1.00            | 148                 |                     |                        |              |           |                 |                      | -     |

#### Treehouse (Standard Load) Environmental Loads

| Site Param                     | neters          |                |                                             |                 |                |                     |                    |            |           |                 |                 |      |
|--------------------------------|-----------------|----------------|---------------------------------------------|-----------------|----------------|---------------------|--------------------|------------|-----------|-----------------|-----------------|------|
| Occupancy                      |                 | - 11           | Table 1                                     | .5-1            | Cod            | e Notes:            |                    |            |           |                 |                 |      |
| Importance Factor              | l <sub>e</sub>  | 1.00           | Table 1                                     | .5-2            |                |                     | Using §            | 11.4.8 E   | xcpt. 2   |                 |                 |      |
| Site Class                     |                 | D-             | § 11.4.                                     | 3, Chapte       | er 20          |                     |                    |            |           |                 |                 |      |
|                                |                 | Use D- if      | no soil inv                                 | vestigation     | has beer       | n performe          | d                  |            |           |                 |                 |      |
| Mapped MCE <sub>R</sub> 5% Dam | oed Para        | ameters        |                                             |                 |                |                     |                    |            |           |                 |                 |      |
| 0.2s-period Accel.             | Ss              | 1.50           | g                                           | § 11.4.2        | <u>2,</u> 4    |                     | S <sub>ms</sub>    | 1.80       | g         | Eq. 11.         | 4-1             |      |
| 1s-period Accel.               | S <sub>1</sub>  | 0.60           | g                                           | § 11.4.2        | 2              |                     | S <sub>m1</sub>    | 1.02       | g         | Eq. 11.         | 4-2             |      |
| Long Trans. Period             | ΤL              | 16             | S                                           | Fig. 22-        | 14, -15        |                     |                    |            |           |                 |                 |      |
| 0.2s-period Site Coeff.        | $F_a$           | 1.20           |                                             | Table 1         | 1.4-1          |                     | S <sub>ds</sub>    | 1.20       | g         | Eq. 11.         | 4-3             |      |
| 1s-period Site Coeff.          | Fv              | 1.70           |                                             | Table 1         | 1.4-2          |                     | S <sub>d1</sub>    | 0.68       | g         | Eq. 11.         | 4-4             |      |
| Seis. Design Category          | SDC             | D              | -                                           | § 11.6          |                |                     |                    |            |           |                 |                 |      |
| E L E Proc                     | adura           | 1              |                                             |                 |                |                     |                    |            |           |                 |                 |      |
|                                | § 12.8          | J              |                                             |                 |                |                     | 52                 |            | Sa . lo/R |                 | Design          |      |
| Structure Type                 | Allo            | thers          |                                             |                 |                |                     | 3d                 |            | Ju IC/N   | •               | Design          |      |
| Response Mod. Factor           | R               | 6.5            |                                             | Table 1.        | 2.2-1          | 1.4                 |                    |            |           |                 |                 |      |
| Structural Height              | h <sub>n</sub>  | 65             | ft                                          |                 |                | (g)                 |                    |            |           |                 |                 |      |
|                                | C <sub>t</sub>  | 0.02           |                                             | Table 1.        | 2.8-2          | S L                 |                    |            |           |                 |                 |      |
|                                | х               | 0.75           |                                             | Table 1.        | 2.8-2          | .0<br>1.0           |                    |            |           |                 |                 |      |
| Structure Period               | Та              | 0.458          | S                                           | Eq. 12.8        | 3-7            | lera                |                    |            |           |                 |                 |      |
|                                | Τo              | 0.113          | S                                           |                 |                | ප <u></u> 0.8       |                    | -          |           |                 |                 |      |
|                                | Ts              | 0.567          | S                                           |                 |                | ie A                |                    |            |           |                 |                 |      |
|                                |                 |                |                                             |                 |                | 0.6                 |                    |            |           |                 |                 |      |
| Seismic Resp. Coeff.           | C <sub>s2</sub> | 0.185          |                                             | Eq. 12.8        | 3-2            | esp                 |                    |            |           |                 |                 |      |
|                                | C <sub>s3</sub> | 0.228          |                                             | Eq. 12.8        | 3-3            | 22 0.4              |                    |            |           |                 |                 |      |
|                                | C <sub>s4</sub> | 7.99           |                                             | Eq. 12.8        | 3-4            | LT2 0.2             |                    | •-         |           |                 |                 | -    |
|                                | C <sub>s5</sub> | 0.053          |                                             | Eq. 12.8        | 3-5            | Spe                 |                    |            |           |                 |                 |      |
|                                | C <sub>s6</sub> | 0.046          |                                             | Eq. 12.8        | 3-6            | 0.0                 |                    |            |           |                 | ••••••          | •••• |
| Design C <sub>s</sub>          | Cs              | 0.185          | _                                           | § 12.8.1        | 1.1            | C                   | 0.0 0.5            | 5 1.0      | 1.5       | 2.0             | 2.5             | 3.0  |
|                                |                 |                | -                                           | § 11.4.8        |                | _                   |                    |            | Period T  | - (s)           |                 |      |
|                                |                 |                |                                             |                 |                | N                   | ΟΤΕ ΤΟ Ι           | JSER       |           |                 |                 |      |
| Structural Period Exp.         | k               | 1              |                                             | § 12.8.3        |                | U                   | nused ro           | ws may     | be rem    | oved by         |                 |      |
| Seismic Weight                 | W               | 179            | kip                                         | § 12.7.2        |                | ex                  | tending            | the Exce   | el Table  | object          |                 |      |
| Seismic Base Shear             | v               | 33             | kip                                         | Eq. 12.8        | 3-1            | us                  | sing the g         | grip in th | ne botto  | om right.       |                 |      |
|                                | Design          | Forces         |                                             |                 |                |                     |                    |            | Diaphra   | agm Loa         | ds              |      |
|                                | kip             | ft             |                                             |                 | kip            | kip                 | kip                |            | kip       | kip             | kip             |      |
| Level                          | w <sub>x</sub>  | h <sub>x</sub> | w <sub>x</sub> ·h <sub>x</sub> <sup>k</sup> | C <sub>vx</sub> | F <sub>x</sub> | V <sub>x</sub> LRFD | V <sub>x</sub> ASD | -          | ΣFi       | Σw <sub>i</sub> | F <sub>px</sub> |      |
| Roof                           | 37              | 64             | 2350                                        | 0.325           | 10.77          | 10.8                | 7.5                |            | 10.8      | 37              | 11              | •    |
| Main Floor                     | 61              | 48             | 2911                                        | 0.403           | 13.34          | 24.1                | 16.9               |            | 24.1      | 97              | 15              |      |
| Store 3                        | 41              | 32             | 1313                                        | 0.182           | 6.017          | 30.1                | 21.1               |            | 30.1      | 138             | 10              |      |
| Store 2                        | 41              | 16             | 656.6                                       | 0.091           | 3.008          | 33.1                | 23.2               |            | 33.1      | 179             | 10              |      |
| Store 1                        | 0               | 0              | 0                                           | 0.000           | 0              | 33.1                | 23.2               |            | 33.1      | 179             | 0               |      |
| Σ                              | 179             |                | 7E+03                                       | 1.00            | 33             |                     |                    |            |           |                 |                 | -    |

#### Treehouse (Standard Load) Environmental Loads

| Site Param                      | eters           | ]              |                                  |                 |                |                     |                        |              |                 |                 |                 |
|---------------------------------|-----------------|----------------|----------------------------------|-----------------|----------------|---------------------|------------------------|--------------|-----------------|-----------------|-----------------|
| Occupancy                       |                 | - 11           | Table 1                          | .5-1            | Cod            | e Notes:            |                        |              |                 |                 |                 |
| Importance Factor               | l <sub>e</sub>  | 1.00           | Table 1                          | .5-2            |                |                     | Using §                | 11.4.8 E     | xcpt. 2         |                 |                 |
| Site Class                      |                 | D-             | § 11.4.                          | 3, Chapte       | er 20          |                     |                        |              |                 |                 |                 |
|                                 |                 | Use D- if      | no soil in                       | vestigation     | has beer       | n performe          | d                      |              |                 |                 |                 |
| Mapped MCE <sub>R</sub> 5% Damp | oed Para        | ameters        |                                  |                 |                |                     |                        |              |                 |                 |                 |
| 0.2s-period Accel.              | Ss              | 1.50           | g                                | § 11.4.2        | 2,4            |                     | <b>S</b> <sub>ms</sub> | 1.80         | g               | Eq. 11.4        | 4-1             |
| 1s-period Accel.                | S1              | 0.60           | g                                | § 11.4.2        | 2              |                     | S <sub>m1</sub>        | 1.02         | g               | Eq. 11.4        | 4-2             |
| Long Trans. Period              | ΤL              | 16             | s                                | Fig. 22         | 14, -15        |                     |                        |              |                 |                 |                 |
| 0.2s-period Site Coeff.         | Fa              | 1.20           |                                  | Table 1         | 1.4-1          |                     | S <sub>ds</sub>        | 1.20         | g               | Eq. 11.4        | 4-3             |
| 1s-period Site Coeff.           | Fv              | 1.70           |                                  | Table 1         | 1.4-2          |                     | S <sub>d1</sub>        | 0.68         | g               | Eq. 11.4        | 1-4             |
| Seis. Design Category           | SDC             | D              | _                                | § 11.6          |                |                     |                        |              |                 |                 |                 |
|                                 |                 | _              | •                                |                 |                |                     |                        |              |                 |                 |                 |
| E.L.F Proc                      | edure           |                |                                  |                 |                |                     |                        |              |                 |                 |                 |
| Structure Type                  |                 | thors          |                                  |                 |                |                     | Sa                     | ••••••       | Sa · Ie/R       | •               | Design          |
| Response Mod Factor             | R               | 5              |                                  | Tahle 1         | 2 2-1          | 1.4                 |                        |              |                 |                 |                 |
| Structural Height               | h               | 65             | ft                               |                 | 2.2 1          | g)                  |                        |              |                 |                 |                 |
| Structurar rieight              | C.              | 0.02           | 11                               | Table 1         | 28-2           | ) es 1.2            |                        |              |                 |                 |                 |
|                                 | ⊂t<br>v         | 0.02           |                                  | Table 1         | 2.0-2          | no                  |                        | $\backslash$ |                 |                 |                 |
| Structure Period                | Ť               | 0.75           | c                                | Fa 12 9         | 2.0-2          | 1.0                 |                        |              |                 |                 |                 |
| Structure renou                 | 'a<br>T.        | 0.438          | 5<br>C                           | LY. 12.0        | )-/            |                     |                        |              |                 |                 |                 |
|                                 | T               | 0.113          | 5<br>C                           |                 |                | AC<br>AC            |                        |              |                 |                 |                 |
|                                 | • s             | 0.507          | 3                                |                 |                | 0.6                 |                        |              |                 |                 |                 |
| Seismic Resp. Coeff             | C.a             | 0 240          |                                  | Fa 128          | 8-2            | spc                 |                        |              | $\mathbf{i}$    |                 |                 |
| Seisinie nesp. even.            | C <sub>s2</sub> | 0.297          |                                  | Eq. 12.0        | 2-3            | <u>8</u> 0.4        |                        |              |                 |                 |                 |
|                                 | C.4             | 10.38          |                                  | Fa 12.8         | , з<br>R-Д     | ctra                | ·····•                 | ••••         |                 |                 |                 |
|                                 | C               | 0.053          |                                  | Fa 12.8         | , ,<br>?-5     | a 0.2<br>ds         |                        | •••••        |                 |                 |                 |
|                                 | C.c             | 0.06           |                                  | Eq. 12.8        | 3-6            | 0.0                 |                        |              |                 | •••••           | ••••••          |
| Design C <sub>s</sub>           | C.              | 0.240          |                                  | § 12.8.1        | l.1            | (                   | 0.0 0.5                | 1.0          | 1.5             | 2.0             | 2.5 3.0         |
| 03                              | - 3             |                |                                  | § <u>11.4.8</u> | ·              |                     |                        |              | Period T        | (s)             |                 |
|                                 |                 |                |                                  | 5               |                | N                   |                        |              |                 |                 |                 |
| Structural Period Exp.          | k               | 1              |                                  | § 12.8.3        |                |                     | nused ro               | ws may       | he rem          | oved hv         |                 |
| Seismic Weight                  | w               | 560            | kip                              | § 12.7.2        |                | even even           | tending                | the Exce     | ol Table        | ohiect          |                 |
| Seismic Base Shear              | v               | 134            | kip                              | Eq. 12.8        | 3-1            | us<br>us            | sing the g             | rip in th    | ne botto        | m right.        |                 |
|                                 |                 |                |                                  | ,               |                |                     |                        | р с.         |                 |                 |                 |
|                                 | Design          | Forces         |                                  |                 |                |                     |                        |              | Diaphra         | agm Loa         | ds              |
|                                 | kip             | ft             | _ L                              | · .             | kip            | kip                 | kip                    |              | kip             | kip             | kip             |
| Level                           | W <sub>x</sub>  | h <sub>x</sub> | w <sub>x</sub> ∙h <sub>x</sub> ⁵ | C <sub>vx</sub> | F <sub>x</sub> | V <sub>x</sub> LRFD | V <sub>x</sub> ASD     | -            | ΣF <sub>i</sub> | Σw <sub>i</sub> | F <sub>px</sub> |
| Roof                            | 37              | 80             | 2938                             | 0.181           | 24.39          | 24.4                | 17.1                   |              | 24.4            | 37              | 18              |
| Main Floor                      | 61              | 64             | 3881                             | 0.240           | 32.22          | 56.6                | 39.6                   |              | 56.6            | 97              | 29              |
| Store 3                         | 41              | 48             | 1970                             | 0.122           | 16.35          | 73.0                | 51.1                   |              | 73.0            | 138             | 20              |
| Store 2                         | 41              | 32             | 1313                             | 0.081           | 10.9           | 83.9                | 58.7                   |              | 83.9            | 179             | 19              |
| Store 1                         | 381             | 16             | 6090                             | 0.376           | 50.56          | 134.4               | 94.1                   |              | 134.4           | 560             | 91              |
| Σ                               | 560             |                | 2E+04                            | 1.00            | 134            |                     |                        |              |                 |                 |                 |

#### **Environmental Loads**

| Site Param                      | neters              |                |                                  |                      |                     |                     |                    |           |           |                 |                 |
|---------------------------------|---------------------|----------------|----------------------------------|----------------------|---------------------|---------------------|--------------------|-----------|-----------|-----------------|-----------------|
| Occupancy                       |                     | П              | Table 1                          | .5-1                 | Cod                 | e Notes:            |                    |           |           |                 |                 |
| Importance Factor               | ۱ <sub>e</sub>      | 1.00           | Table 1                          | .5-2                 |                     |                     | Using §            | 11.4.8 E  | xcpt. 2   |                 |                 |
| Site Class                      |                     | D-             | § 11.4.                          | 3, Chapte            | er 20               |                     |                    |           |           |                 |                 |
|                                 |                     | Use D- if      | no soil in                       | vestigation          | has beer            | n performe          | d                  |           |           |                 |                 |
| Mapped MCE <sub>R</sub> 5% Damp | oed Para            | ameters        |                                  |                      |                     |                     |                    |           |           |                 |                 |
| 0.2s-period Accel.              | Ss                  | 1.50           | g                                | § 11.4.2             | <u>2,</u> 4         |                     | S <sub>ms</sub>    | 1.80      | g         | Eq. 11.4        | 1-1             |
| 1s-period Accel.                | S <sub>1</sub>      | 0.60           | g                                | § 11.4.2             | 2                   |                     | S <sub>m1</sub>    | 1.02      | g         | Eq. 11.4        | 1-2             |
| Long Trans. Period              | ΤL                  | 16             | s                                | Fig. 22              | 14, -15             |                     |                    |           |           |                 |                 |
| 0.2s-period Site Coeff.         | Fa                  | 1.20           |                                  | Table 1              | 1.4-1               |                     | S <sub>ds</sub>    | 1.20      | g         | Eq. 11.4        | 4-3             |
| 1s-period Site Coeff.           | Fv                  | 1.70           |                                  | Table 1              | 1.4-2               |                     | Sd1                | 0.68      | g         | Eq. 11.4        | 1-4             |
| Seis. Design Category           | SDC                 | D              | _                                | § 11.6               |                     |                     |                    |           |           |                 |                 |
|                                 |                     |                | -                                |                      |                     |                     |                    |           |           |                 |                 |
| E.L.F Proc                      | edure               | _              |                                  |                      |                     |                     |                    |           |           |                 |                 |
| c <del>.</del>                  | § 12.8              | . l            |                                  |                      |                     |                     | <b></b> Sa         |           | Sa · Ie/R | ٠               | Design          |
| Structure Type                  |                     | thers          |                                  | Tuble 1              | 224                 | 14                  |                    |           |           |                 |                 |
| Response Mod. Factor            | ĸ                   | 6.5            | <i>c</i> .                       | Table 1.             | 2.2-1               |                     |                    |           |           |                 |                 |
| Structural Height               | n <sub>n</sub>      | 65             | ft                               |                      |                     | ອ<br>ເອ 1.2         |                    |           |           |                 |                 |
|                                 | C <sub>t</sub>      | 0.02           |                                  | Table 1.             | 2.8-2               | on S                |                    |           |           |                 |                 |
|                                 | ×                   | 0.75           |                                  | Table 1.             | 2.8-2               | 0.1 gti             |                    |           |           |                 |                 |
| Structure Period                |                     | 0.458          | S                                | Eq. 12.8             | 3-7                 | ele                 |                    |           |           |                 |                 |
|                                 | ι <sub>ο</sub><br>- | 0.113          | S                                |                      |                     | 20.8<br>V           |                    |           |           |                 |                 |
|                                 | l <sub>s</sub>      | 0.567          | S                                |                      |                     | es o e              |                    |           |           |                 |                 |
|                                 | ~                   | 0.405          |                                  |                      |                     | lod                 |                    |           |           |                 |                 |
| Seismic Resp. Coeff.            | C <sub>s2</sub>     | 0.185          |                                  | Eq. 12.8             | 3-2                 | 9<br>2<br>0.4       |                    |           |           |                 |                 |
|                                 | C <sub>s3</sub>     | 0.228          |                                  | Eq. 12.8             | 3-3                 | tral                |                    |           |           |                 |                 |
|                                 | C <sub>s4</sub>     | 7.99           |                                  | Eq. 12.8             | 3-4                 | 0.2 d               |                    | ••••••    |           |                 |                 |
|                                 | C <sub>s5</sub>     | 0.053          |                                  | Eq. 12.8             | 3-5                 | S                   | <i>.</i>           | •••••     | ••••••    |                 |                 |
| D ·                             | C <sub>s6</sub>     | 0.046          |                                  | Eq. 12.8             | 3-6                 | 0.0                 | 10 05              | 1.0       | 15        | 2.0             | 25 30           |
| Design C <sub>s</sub>           | C <sub>s</sub>      | 0.185          | :                                | § 12.8.1             | 1.1                 |                     | 0.0                | 1.0       | Doriod T  | - (c)           | 2.5 5.0         |
|                                 |                     |                |                                  | § 11.4.8             |                     | _                   |                    |           | renou i   | (3)             |                 |
| Church and Davied Free          | ь.                  | 1              |                                  | 6 1 2 0 2            |                     | N                   | OTE TO L           | JSER      |           |                 |                 |
| Structural Period Exp.          | к                   | 170            | kin                              | 9 12.8.3<br>£ 12 7 2 |                     | U                   | nused ro           | ws may    | be rem    | oved by         |                 |
| Seismic Weight                  | vv                  | 1/9            | кір                              | 9 12.7.2             | 2 4                 | e>                  | xtending           | the Exce  | el Table  | object          |                 |
| Seismic Base Shear              | v                   | 33             | кір                              | Eq. 12.8             | 5-1                 | us                  | sing the g         | rip in th | e botto   | om right.       |                 |
|                                 | Design              | Forces         |                                  |                      |                     |                     |                    |           | Diaphra   | agm Loa         | ds              |
|                                 | kip                 | ft             |                                  |                      | kip                 | kip                 | kip                |           | kip       | kip             | kip             |
| Level                           | w <sub>x</sub>      | h <sub>x</sub> | w <sub>x</sub> ·h <sub>x</sub> * | C <sub>vx</sub>      | ,<br>F <sub>x</sub> | V <sub>x</sub> LRFD | V <sub>x</sub> ASD | -         | ΣĖ        | Σw <sub>i</sub> | Γ <sub>px</sub> |
| Roof                            | 37                  | 64             | 2350                             | 0.325                | 10.77               | 10.8                | 7.5                |           | 10.8      | 37              | 11              |
| Main Floor                      | 61                  | 48             | 2911                             | 0.403                | 13.34               | 24.1                | 16.9               |           | 24.1      | 97              | 15              |
| Store 3                         | 41                  | 32             | 1313                             | 0.182                | 6.017               | 30.1                | 21.1               |           | 30.1      | 138             | 10              |
| Store 2                         | 41                  | 16             | 656.6                            | 0.091                | 3.008               | 33.1                | 23.2               |           | 33.1      | 179             | 10              |
| Store 1                         | 0                   | 0              | 0                                | 0.000                | 0                   | 33.1                | 23.2               |           | 33.1      | 179             | 0               |
| Σ                               | 179                 |                | 7E+03                            | 1.00                 | 33                  |                     |                    |           |           |                 |                 |

# Imagineering Inc.

# Appendix D: Foundation Alternatives

## PILE FOUNDATION

### **Compressive and Tensile Capacity**

Pile depth, properties, and size. From ASCE Steel Construction Manual

Embedment length below seasonal frost depth  $L_e$ , assume seasonal frost depth  $(L_a)=5$  feet

 $L_e \coloneqq 55 \ ft$ 

 $L_a \coloneqq 5 ft$ 

Using Pipe 16 Std. from ASCE Steel Construction Manual

 $D := 24 \ in$   $D_{in} := 23.3 \ in$ 

$$A_t := \pi \cdot \left(\frac{D}{2}\right)^2 - \pi \cdot \left(\frac{D_{in}}{2}\right)^2 = 0.181 \ ft^2$$

$$W_p := 94.7 \frac{lb}{ft} \cdot (L_e + L_a) = (5.682 \cdot 10^3) \ lb$$
 assume 12 x-strong pipe, 1/2" wall

Loads from structure

 $BL = 341700 \ lb$  Highest bearing pressure combination

 $DL \coloneqq 126200 \ lb + 20000 \ lb$ Building weight

 $U_{wind} = 41300 \ lb$  Highest uplift combination

Bearing capacity factor, take phi (friction angle of dense sandy silt to sandy gravel) =34 degrees

 $N_{q} = 42$ 

Earth pressure coefficient

 $K_{hc} \! \coloneqq \! 1.3$ 

Friction angle between pile and soil

 $\delta \coloneqq 20^{\circ}$ 

Find depth that  $P_0$  maximum occurs, conservative approach

 $P_{0max} \coloneqq 20 \cdot D = 40 \ ft$ 

Find effective stress at a depth of 3.0 feet and 40 feet assuming homogenous soil below 3 foot depth, work in separate excel sheet

 $\gamma_1$  and  $\gamma_2$  are assumptions based on NAVFAC 7.01 soil properties

$$\gamma_3 := 130 \ \frac{lb}{ft^3}$$
  $\gamma_w := 62.4 \ \frac{lb}{ft^3}$   $\gamma_1 := 80 \ \frac{lb}{ft^3}$   $\gamma_2 := 95 \ \frac{lb}{ft^3}$ 

$$P_{3ft} \coloneqq 168.9 \frac{lb}{ft^2}$$

$$P_{max} \approx 2670 \frac{lb}{ft^2}$$

$$P_{ave} := \frac{\left(P_{max} + P_{3ft}\right)}{2} = 1419 \frac{lb}{ft^2}$$

Find pile surface areas discounting top layer organics

$$S \coloneqq (20 \ \mathbf{ft} - 3 \ \mathbf{ft}) \cdot \boldsymbol{\pi} \cdot \boldsymbol{D} \quad S_1 \coloneqq (L_e - 20 \ \mathbf{ft}) \cdot \boldsymbol{\pi} \cdot \boldsymbol{D}$$

Find load capacity in compression

$$Q_{ult} \coloneqq P_{max} \cdot N_q \cdot A_t + \left( K_{hc} \cdot P_{ave} \cdot \tan\left(\delta\right) \cdot S + K_{hc} \cdot P_{max} \cdot \tan\left(\delta\right) \cdot S_1 \right) = 369814 \ lb$$

Apply safety factor to find ultimate compressive load capacity

 $FS \coloneqq 3$ 

$$Q_{all} \coloneqq \frac{Q_{ult}}{FS} = 123271 \ lb$$

Find ultimate load capacity in tension

$$K_{ht} = 0.7$$

$$T_{ult} \coloneqq K_{ht} \cdot P_{ave} \cdot \tan\left(\delta\right) \cdot S + K_{ht} \cdot P_{max} \cdot \tan\left(\delta\right) \cdot S_1 = \left(1.882 \cdot 10^5\right) \, lb$$

$$W_n = 5682 \ lb$$

 $FS \coloneqq 2.5$ 

$$T_{all}\!\coloneqq\!\!\frac{T_{ult}}{FS}\!+\!W_p\!=\!80972~\textit{lb}$$

Add 1/4 of structure weight to allowable tensile capacity in accordance with industry standards

$$T_{all} \coloneqq T_{all} + \frac{1}{4} \cdot DL = 117522 \ lb$$

Find frost heave force considering 3 feet of peat and 2 feet of silty soils

$$P_{u} := \frac{40 \frac{lb}{in^{2}} \cdot 2 + 10 \frac{lb}{in^{2}} \cdot 3}{5} = 22 \frac{lb}{in^{2}}$$

$$Soli Type \qquad P_{u} := \frac{300 \text{ Solit Type}}{5} = 22 \frac{lb}{in^{2}}$$

$$Solity (most frost-susceptible) soils \qquad 40 \text{ psi (270 kPa)} \\ Organic soils \qquad 10 \text{ psi (70 kPa)} \\ Silty granular soils \qquad 20 \text{ psi (140 kPa)}$$

$$L_a = 5 ft$$

Find total uplift

$$U \coloneqq P_u \cdot D \cdot \pi \cdot L_a + \frac{U_{wind}}{4} = 109851 \ lb$$

Calculated ultimate compressive load on pile per pile leg

 $Q_{uc}\!\coloneqq\!\frac{BL}{4}\!=\!85425~\textit{lb}$ 

Check compressive capacity versus compressive load and tensile capacity versus total uplift  $Q_{all} > Q_{uc} = 1$  $T_{all} > U = 1$ Lateral Capacity (Pile Deflection) Using Winklers model:  $x_z(z) = A_x \frac{Q_g T^3}{E_p I_p} + B_x \frac{M_g T^2}{E_p I_p}$ There will be no moment transferred from the tower, only lateral load  $M_g \coloneqq 0$ Steel modulus of elasticity  $E_p \coloneqq 29000 \ ksi$ Find moment of inertia using Pipe 16 Std. from ASCE Steel Construction Manual  $I_p \coloneqq 1820 \ in^4 = 0.0878 \ ft^4$ From professional opinion  $n_h \coloneqq 35 \frac{lbf}{in^3}$ 

| $T \coloneqq \sqrt[5]{\frac{E_p \cdot I_p}{n_h}} = 68.498 \ \mathbf{in}$ |
|--------------------------------------------------------------------------|
|                                                                          |
| <u>I otal pile length</u>                                                |
| $L \coloneqq L_e + L_a = 60 \ \mathbf{ft}$                               |
| <u>L/T is greater than 5, use table 9.15 to find <math>A_r</math></u>    |
|                                                                          |
| $\frac{L}{m} = 10.511$                                                   |
|                                                                          |
|                                                                          |

Find characteristic length of soil-pile section

Using excel to solve for pile deflection gives a maximum deflection of 0.12 inches at the top of the pile

| T (in)    | 53.46 | Ax    | x(z) (in) |  |
|-----------|-------|-------|-----------|--|
| Qg (kip)  | 5     | 2.435 | 0.121716  |  |
| Ep (ksi)  | 29000 | 2.273 | 0.113618  |  |
| lp (in^4) | 527   | 2.112 | 0.10557   |  |
|           |       | 1.952 | 0.097573  |  |
|           |       | 1.796 | 0.089775  |  |

## Lateral load (Pile Moment)

Using Winkler's model

 $M_z(z) = A_m Q_g T + B_m M_g$ 

There will be no moment transferred from the tower, only lateral load

 $M_g \coloneqq 0$ 

Find pile properties using Pipe 16 Std. from ASCE Steel Construction Manual

 $Z \coloneqq 196 \ \mathbf{in}^3 \qquad \qquad F_y \coloneqq 46000 \ \frac{\mathbf{lbf}}{\mathbf{in}^2}$ 

Using excel to find pile moment gives a maximum moment of 17.2 kip\*ft

 $M_u \! \coloneqq \! 17.2 \ \textit{kip} \cdot \textit{ft}$ 

Find ultimate moment capacity of pile

 $\phi \coloneqq 0.9$ 

 $\phi M_n \coloneqq \phi \cdot F_y \cdot Z = 676.2 \ kip \cdot ft$ 

Check maximum moment occurring in pile versus ultimate moment capacity of pile

 $\phi M_n > M_u = 1$ 

#### **Pile Settlement**

$$s_e = s_{e(1)} + s_{e(2)} + s_{e(3)}$$

Find  $s_{e1}$ , elastic settlement of pile

$$s_{e(1)} = \frac{(Q_{wp} + \xi Q_{ws})L}{A_p E_p}$$

Use ratio of load capacity of tip and skin resistance of pile to find amount of load carried by the tip and the skin resistance

Fraction of load capacity carried by pile tip

$$\frac{P_{max} \cdot N_q \cdot A_t}{= 0.055}$$

 $Q_{ult}$ 

Fraction of load capacity carried by skin resistance

$$\frac{\left(K_{hc} \cdot P_{ave} \cdot \tan\left(\delta\right) \cdot S + K_{hc} \cdot P_{max} \cdot \tan\left(\delta\right) \cdot S_{1}\right)}{Q_{ult}} = 0.945$$

$$\begin{aligned} Q_{wp} &:= \frac{BL}{4} \cdot 0.058 = (4.955 \cdot 10^3) \ lb \qquad Q_{wp} := (1.639 \cdot 10^3) \ lbf \\ Q_{ws} &:= \frac{BL}{4} \cdot 0.942 = (8.047 \cdot 10^4) \ lb \qquad Q_{ws} := (2.661 \cdot 10^4) \ lbf \\ \hline Triangular distribution \\ \xi &:= 0.67 \\ \hline Area of the tip of the pile \\ A_p := A_t \qquad A_t = 0.181 \ ft^2 \\ \hline Elastic settlement of pile \\ \hline s_{e1} := \frac{(Q_{wp} + \xi \cdot Q_{wy}) \cdot L}{A_t \cdot E_p} = 0.019 \ in \\ \hline Find \ s_{e2} \ settlement caused by load at pile tip \\ \hline s_{e(2)} = \frac{q_w D}{E_t} (1 - \mu_c^2) I_{wp} \\ \hline Q_{wp} := 2.26 \cdot 10^3 \ lb \qquad Q_{ws} := 2.599 \cdot 10^4 \ lb \\ \hline Point load per unit area at the pile point \\ q_{wp} := \frac{Q_{wp}}{A_p} = (1.251 \cdot 10^4) \ \frac{lb}{ft^2} \\ \hline Influence factor \\ I_{wp} := 0.85 \end{aligned}$$

Steel modulus of elasticity

$$E_s \coloneqq 500000 \frac{lb}{ft^2}$$

Poisson's ratio for soil

$$\mu_s := 0.30$$

5

Settlement caused by load at pile tip

$$S_{e2} \coloneqq \frac{q_{wp} \cdot D}{E_s} \cdot (1 - \mu_s) \cdot I_{wp} = 0.357 \text{ in}$$

Find  $s_{e3}$ , settlement caused by load transmitted along pile shaft

$$s_{e(3)} = \left(\frac{Q_{ws}}{pL}\right) \frac{D}{E_s} (1 - \mu_s^2) I_{ws}$$

Pile perimeter

$$p \coloneqq 2 \cdot \pi \cdot \left(\frac{D}{2}\right) - 2 \cdot \pi \cdot \left(\frac{D_{in}}{2}\right) = 0.183 \ ft$$

Influence factor

$$I_{ws} := 2 + 0.35 \cdot \sqrt{\frac{L}{D}} = 3.917$$

Settlement caused by load transmitted along pile shaft

$$s_{e3} \coloneqq \left( \frac{Q_{ws}}{p \cdot L} \right) \cdot \frac{D}{E_s} \cdot \left( 1 - \mu_s^2 \right) \cdot I_{ws} = 0.404$$
 in

Find total elastic settlement of one pile

 $s_e \! \coloneqq \! s_{e1} \! + \! s_{e2} \! + \! s_{e3} \! = \! 0.78 \, \operatorname{\textit{in}}$ 

## Pile Foundation Summary

Final Conservative Pile Foundation (assuming future building calculations do not produce any higher uplift or load values): (Single pile capacities)

- Pile Outside Diameter= 24 inches

- Pile Length= 60 feet

- Uplift Capacity= 117500 pounds
- Settlement= 0.78 inches
- Bearing capacity= 123200 pounds
- Moment capacity= 676 kip\*feet

## **SHALLOW FOUNDATION**

#### **Bearing Capacity**

Shallow foundation calculations modified for high water table Case I

 $q_u = 1.3c'N_c + qN_q + 0.4\gamma BN_{\gamma}$ (for shallow square foundations)

Take angle of internal friction from blow counts and sand density, Meyerhof 1956  $\phi \coloneqq 34$  °

Take bearing capacity factors from Principles of Foundation Engineering, Table 4.2

$$N_c := 52.64$$
  $N_q := 36.50$   $N_\gamma := 38.04$ 

Assume that cohesion will dissipate over time, disregard

 $c' \coloneqq 0$ 

Л

Find soil properties, interpolated from blow counts and NAVFAC 7.01

$$\gamma \coloneqq 100 \frac{lb}{ft^3} \qquad \gamma_w \coloneqq 62.4 \frac{lb}{ft^3} \qquad \gamma_{sat} \coloneqq 130 \frac{lb}{ft^3}$$

Assumed foundation dimensions

 $D_1 \coloneqq 1.5 \ ft$ Taken from core log above

$$D_{2} \coloneqq 4.5 \ ft$$

$$D_{f} \coloneqq D_{2} + D_{1} \equiv 6 \ ft$$

$$B \coloneqq 9 \ ft$$

$$Groundwater \uparrow D_{1}$$

$$D_{f} \coloneqq D_{f} \hookrightarrow D_{f}$$

$$D_{f} \hookrightarrow D_{f} \hookrightarrow D_{2}$$

$$D_{2} \hookrightarrow D_{2}$$

$$D_{2} \hookrightarrow D_{2}$$

#### Find Ultimate bearing capacity for Case I

**Case I.** If the water table is located so that  $0 \le D_1 \le D_f$ , the factor q in the bearing capacity equations takes the form

 $q = \text{effective surcharge} = D_1 \gamma + D_2 (\gamma_{\text{sat}} - \gamma_w)$ (4.23) Find effective surcharge

$$q \coloneqq D_1 \cdot \gamma + D_2 \cdot \left(\gamma_{sat} - \gamma_w\right) = 454.2 \frac{lb}{ft^2}$$

Find bearing capacity

$$q_u \coloneqq q \cdot N_q + 0.4 \cdot \gamma \cdot B \cdot N_\gamma = (3.027 \cdot 10^4) \frac{lb}{ft^2}$$

Apply conservative safety factor of 3 to find ultimate bearing capacity

$$FS \coloneqq 3$$

$$q_{all} \coloneqq \frac{q_u}{FS} = 10091 \frac{lb}{ft^2}$$

Compare compressive bearing capacity to ultimate bearing pressure on footing

$$p \coloneqq \frac{\left(\frac{BL}{4}\right)}{B \cdot B} = 1055 \frac{lb}{ft^2}$$

 $q_{all} > p = 1$ 

Allowable bearing capacity is greater than bearing pressure from structure, foundation works. Design requires additional 1 foot excavation and backfill with suitable Type A material.

## **Uplift Capacity**

 $F_q = \frac{Q_u}{A\gamma D_f}$ 

Find uplift capacity of the footing (Qu) by changing bearing capacity

$$A \coloneqq B \cdot B = 81 \ ft^2$$

$$D_f = 6 ft$$

$$\phi' = 31^{\circ}$$

| $D_{\alpha}$                                                                   | <b>Table 5.5</b> Variation of $K_{m}$ , $m$ , and $(D_{e}/B)_{err}$                                 |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                                                                    |  |  |  |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $\frac{D_f}{B} = 0.667$                                                        | Soil friction angle, $\phi'$ (deg)                                                                  | Ku                                                                                                                          | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( <i>D<sub>f</sub>/B</i> ) <sub>cr</sub> for square and circular foundations                                                                                                                           |                                                                                                                                                                    |  |  |  |
|                                                                                | 20                                                                                                  | 0.856                                                                                                                       | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.                                                                                                                                                                                                     | 5                                                                                                                                                                  |  |  |  |
|                                                                                | 25                                                                                                  | 0.888                                                                                                                       | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                      |                                                                                                                                                                    |  |  |  |
|                                                                                | 30                                                                                                  | 0.920                                                                                                                       | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                      |                                                                                                                                                                    |  |  |  |
|                                                                                |                                                                                                     | 0.936                                                                                                                       | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                      |                                                                                                                                                                    |  |  |  |
|                                                                                | 40                                                                                                  | 0.960                                                                                                                       | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                      |                                                                                                                                                                    |  |  |  |
|                                                                                |                                                                                                     |                                                                                                                             | ( ת )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                        |                                                                                                                                                                    |  |  |  |
| Using engineering ju                                                           | $\frac{dgement}{B}$ will be le                                                                      | <u>ess than</u>                                                                                                             | $\left(\frac{D_f}{B}\right)cr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                        |                                                                                                                                                                    |  |  |  |
| Interpolate K <sub>u</sub>                                                     |                                                                                                     |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                                                                    |  |  |  |
| $K_u \coloneqq 0.920 + \left(\frac{(34 - 3)}{35 - 3}\right)$                   | $\left( \begin{array}{c} 60\\ 30 \end{array} \right) \cdot \left( 0.936 - 0.920 \right) =$          | 0.933                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                                                                    |  |  |  |
| Interpolate m                                                                  |                                                                                                     |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                                                                    |  |  |  |
| $m \coloneqq 0.15 + \left(\frac{(34 - 30)}{35 - 30}\right)$                    | $\left( 0.25 - 0.15 \right) = 0.23$                                                                 | }                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                                                                    |  |  |  |
| Calculate non dimens                                                           | sional breakout factor                                                                              |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                                                                    |  |  |  |
| $F_q \coloneqq 1 + 2 \cdot \left(1 + m \cdot \left(1 + m \cdot \right)\right)$ | $\left(\frac{D_f}{B}\right) \cdot \left(\frac{D_f}{B}\right) \cdot K_u \cdot \tan\left(\phi\right)$ | y')=1.968                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                                                                    |  |  |  |
|                                                                                |                                                                                                     |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                        |                                                                                                                                                                    |  |  |  |
| Find $\gamma$ for soil backfi found in the local are                           | lled over foundation, a                                                                             | ssumed a                                                                                                                    | is type A i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | naterial tha                                                                                                                                                                                           | at can be                                                                                                                                                          |  |  |  |
| Find $\gamma$ for soil backfi found in the local are                           | <u>lled over foundation, a</u>                                                                      | ssumed a                                                                                                                    | is type A i<br>Index Prope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | naterial the                                                                                                                                                                                           | at can be                                                                                                                                                          |  |  |  |
| Find $\gamma$ for soil backfi found in the local are                           | lled over foundation, a                                                                             | ssumed a                                                                                                                    | is type A i<br>Index Propo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rties (from Λ<br>γ (lb/ft <sup>3</sup> ) γ <sub>sub</sub>                                                                                                                                              | at can be<br>IAVFAC 7.01<br>(Ib/ft <sup>3</sup> )                                                                                                                  |  |  |  |
| Find $\gamma$ for soil backfi found in the local are                           | lled over foundation, a<br>2a<br>Typical Va<br>Sand; clea                                           | ssumed a<br>lues of Soil<br>Soil Type                                                                                       | Index Prope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | erties (from $\Lambda$<br>$\gamma$ (lb/ft <sup>3</sup> ) $\gamma$ sub<br>84 - 136 52<br>81 - 136 51                                                                                                    | at can be<br>IAVFAC 7.01<br>(lb/ft <sup>3</sup> )<br>- 73<br>- 73                                                                                                  |  |  |  |
| Find $\gamma$ for soil backfi found in the local are                           | lled over foundation, a<br>3a<br>Typical Va<br>Sand; clea<br>Silt                                   | ssumed a<br>lues of Soil<br>Soil Type<br>n, uniform, fir<br>; uniform, ino<br>Silty Sand                                    | Index Prope<br>ne or medium<br>rganic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rties (from A<br>(http://www.second<br>y (lb/ft <sup>3</sup> ) Ysub<br>84 - 136 52<br>81 - 136 51<br>88 - 142 54                                                                                       | AVEAC 7.01<br>(lb/ft <sup>3</sup> )<br>- 73<br>- 73<br>- 79                                                                                                        |  |  |  |
| Find $\gamma$ for soil backfi<br>found in the local are                        | Iled over foundation, a<br>2a<br>Typical Va<br>Sand; clea<br>Silt                                   | ssumed a<br>lues of Soil<br>Soil Type<br>In, uniform, fir<br>; uniform, ino<br>Silty Sand<br>and; Well-gra                  | Index Property Index | material the           erties (from Λ           γ (lb/ft <sup>3</sup> ) γ <sub>sub</sub> 84 - 136         52           81 - 136         51           88 - 142         54           86 - 148         53 | TAVEAC 7.01           (b/ft <sup>3</sup> )           - 73           - 73           - 73           - 73           - 73           - 73           - 78           - 86 |  |  |  |
| Find $\gamma$ for soil backfift<br>found in the local are                      | Iled over foundation, a<br>2a<br>Typical Va<br>Sand; clea<br>Silt<br>Silt<br>Silt                   | ssumed a<br>lues of Soil<br>Soil Type<br>In, uniform, fir<br>; uniform, inor<br>Silty Sand<br>and; Well-gra<br>y Sand and C | Index Property Index | rties (from Λ<br>γ (lb/ft <sup>3</sup> ) γ <sub>sub</sub><br>84 - 136 52<br>81 - 136 51<br>88 - 142 54<br>86 - 148 53<br>90 - 155 56<br>100 - 147 23                                                   | AVFAC 7.01       (Ib/ft <sup>3</sup> )       - 73       - 73       - 73       - 79       - 86       - 92       95                                                  |  |  |  |

Calculate uplift capacity

$$F_{q} = \frac{Q_{u}}{A \cdot \gamma \cdot D_{f}} \xrightarrow{solve, Q_{u}} \frac{119528.13988818171337 \cdot lb \cdot ft^{3}}{ft^{3}} = 119528 \ lb$$

Apply safety factor

 $FS \coloneqq 2$ 

$$Q_u \coloneqq \frac{90539 \ lbf}{2} = 45.27 \ kip$$

Compare uplift capacity to uplift from structure

$$U_{wind} = 41300 \ lb$$
  $U_{1leg} := \frac{41300 \ lbf}{4} = (1.033 \cdot 10^4) \ lbf$ 

$$Q_u > U_{1leg} = 1$$

## **Foundation Settlement**

| Find footing properties and                      | restate soil properties              |
|--------------------------------------------------|--------------------------------------|
| $q_{all} = (1.009 \cdot 10^4) \; rac{lb}{ft^2}$ | Bearing capacity as calculated above |
| $\mu_s := 0.30$                                  |                                      |
| $E_s \coloneqq 500000 \frac{lb}{ft^2}$           | orrelated from blow counts           |
| $B' \coloneqq \frac{B}{2} = 4.5 \ ft$            |                                      |
| <i>α</i> :=4                                     |                                      |
|                                                  |                                      |
|                                                  |                                      |



|                                         | <b>Table 7.4</b> Variation of $I_f$ with $D_f/B$ , $B/L$ , and $\mu_x$ |         |      |      |      |  |
|-----------------------------------------|------------------------------------------------------------------------|---------|------|------|------|--|
| $\frac{D_f}{M_f} = 0.667$ $\mu_s = 0.3$ |                                                                        |         | S    | B/L  |      |  |
| $B$ $\mu_s$ $\mu_s$ $\mu_s$             | μ <sub>s</sub>                                                         | $D_t/B$ | 0.2  | 0.5  | 1.0  |  |
|                                         | 0.3                                                                    | 0.2     | 0.95 | 0.93 | 0.90 |  |
|                                         |                                                                        | 0.4     | 0.90 | 0.86 | 0.81 |  |
| $(0.74 \pm 0.65)$                       |                                                                        | 0.6     | 0.85 | 0.80 | 0.74 |  |
| $I_f := \frac{(1 + 1 + 2)}{2} = 0.695$  |                                                                        | 1.0     | 0.78 | 0.71 | 0.65 |  |

Calculate allowable bearing capacity of flexible foundation based on 1 inch settlement

$$S_{e_{flx}} := 1 \ in = 0.083 \ ft \qquad S_{e} = q_{o}(\alpha B') \frac{1 - \mu_{s}^{2}}{E_{s}} I_{s} I_{f}$$

$$S_{e\_flx} = q_o \cdot (\alpha \cdot B') \cdot \frac{(1 - \mu_s^2)}{E_s} \cdot I_s \cdot I_f$$

$$\frac{S_{e_{flx}}}{\left(\alpha \cdot B'\right) \cdot \frac{\left(1 - \mu_s^2\right)}{E_s} \cdot I_s \cdot I_f} = \left(2.523 \cdot 10^3\right) \frac{lb}{ft^2}$$

 $p = (1 \cdot 10^3) \frac{lb}{ft^2}$ 

$$q_o := 2523 \frac{lb}{ft^2}$$
  $q_o > p = 1$ 

Based on 1 inch settlement, the maximum allowable bearing capacity of the foundation is 2523 psf, which is still greater than the bearing pressure from the structure.

Calculate elastic settlement of rigid foundation

$$S_e := 0.93 \cdot S_{e-flr} = 0.93$$
 in

## Shallow Foundation Summary

Final Conservative Shallow Foundation (assuming future building calculations do not produce any higher uplift or load values): (Values for one pad)

- Dimensions= 9'x9'

- Depth to bottom of footing= 6 feet
- Uplift capacity= 45270 pounds
- Elastic settlement= 0.93 inches
- Bearing capacity based on settlement= 2523 pounds per square foot



## PILE FOUNDATION

## **Design Alternative C**

Detailed analysis should be performed before final design, calculations carried out below consider only the uplift and shear force from the structure and the pile capacities calculated above

 $Q_{all} \coloneqq 123271 \ \textit{lbf} = 123.271 \ \textit{kip}$ 

 $T_{all} := 80972 \ lb$ 

 $U_c \coloneqq 67 \ kip$ 

Approximate shear force on one corner

Shear := 1568  $\frac{lbf}{ft} \cdot 40 \ ft = 62.72 \ kip$ 

In order to ensure minimal pile deflection, use 2 pile groups in each building corner.

| Dw    | 1.5     | ft          | Pile Fou     | Pile Foundation |  |
|-------|---------|-------------|--------------|-----------------|--|
|       |         |             | Effective    | e Stress        |  |
| Depth | Unit Wt | Total Stres | seutral Stre | Eff Stress      |  |
| ft    | pcf     | psf         | psf          | psf             |  |
| 0     | 80      | 0           | 0            | 0               |  |
| 1     | 80      | 80          | 0            | 80              |  |
| 1.5   | 80      | 120         | 0            | 120             |  |
| 2.5   | 95      | 215         | 62.4         | 152.6           |  |
| 3     | 95      | 262.5       | 93.6         | 168.9           |  |
| 4     | 130     | 392.5       | 156          | 236.5           |  |
| 5     | 130     | 522.5       | 218.4        | 304.1           |  |
| 6     | 130     | 652.5       | 280.8        | 371.7           |  |
| 7     | 130     | 782.5       | 343.2        | 439.3           |  |
| 8     | 130     | 912.5       | 405.6        | 506.9           |  |
| 9     | 130     | 1042.5      | 468          | 574.5           |  |
| 10    | 130     | 1172.5      | 530.4        | 642.1           |  |
| 11    | 130     | 1302.5      | 592.8        | 709.7           |  |
| 12    | 130     | 1432.5      | 655.2        | 777.3           |  |
| 13    | 130     | 1562.5      | 717.6        | 844.9           |  |
| 14    | 130     | 1692.5      | 780          | 912.5           |  |
| 15    | 130     | 1822.5      | 842.4        | 980.1           |  |
| 16    | 130     | 1952.5      | 904.8        | 1047.7          |  |
| 17    | 130     | 2082.5      | 967.2        | 1115.3          |  |
| 18    | 130     | 2212.5      | 1029.6       | 1182.9          |  |
| 19    | 130     | 2342.5      | 1092         | 1250.5          |  |
| 20    | 130     | 2472.5      | 1154.4       | 1318.1          |  |
| 21    | 130     | 2602.5      | 1216.8       | 1385.7          |  |
| 22    | 130     | 2732.5      | 1279.2       | 1453.3          |  |
| 23    | 130     | 2862.5      | 1341.6       | 1520.9          |  |
| 24    | 130     | 2992.5      | 1404         | 1588.5          |  |
| 25    | 130     | 3122.5      | 1466.4       | 1656.1          |  |
| 26    | 130     | 3252.5      | 1528.8       | 1723.7          |  |
| 27    | 130     | 3382.5      | 1591.2       | 1791.3          |  |
| 28    | 130     | 3512.5      | 1653.6       | 1858.9          |  |
| 29    | 130     | 3642.5      | 1716         | 1926.5          |  |

| 30 | 130 | 3772.5 | 1778.4 | 1994.1 |
|----|-----|--------|--------|--------|
| 31 | 130 | 3902.5 | 1840.8 | 2061.7 |
| 32 | 130 | 4032.5 | 1903.2 | 2129.3 |
| 33 | 130 | 4162.5 | 1965.6 | 2196.9 |
| 34 | 130 | 4292.5 | 2028   | 2264.5 |
| 35 | 130 | 4422.5 | 2090.4 | 2332.1 |
| 36 | 130 | 4552.5 | 2152.8 | 2399.7 |
| 37 | 130 | 4682.5 | 2215.2 | 2467.3 |
| 38 | 130 | 4812.5 | 2277.6 | 2534.9 |
| 39 | 130 | 4942.5 | 2340   | 2602.5 |
| 40 | 130 | 5072.5 | 2402.4 | 2670.1 |
| 41 | 130 | 5202.5 | 2464.8 | 2737.7 |
| 42 | 130 | 5332.5 | 2527.2 | 2805.3 |
| 43 | 130 | 5462.5 | 2589.6 | 2872.9 |
| 44 | 130 | 5592.5 | 2652   | 2940.5 |
| 45 | 130 | 5722.5 | 2714.4 | 3008.1 |
| 46 | 130 | 5852.5 | 2776.8 | 3075.7 |
| 47 | 130 | 5982.5 | 2839.2 | 3143.3 |
| 48 | 130 | 6112.5 | 2901.6 | 3210.9 |
| 49 | 130 | 6242.5 | 2964   | 3278.5 |
| 50 | 131 | 6373.5 | 3026.4 | 3347.1 |

## Pile Foundation Lateral deflection

| T (in)    | 68.5  |
|-----------|-------|
| Qg (kip)  | 5     |
| Ep (ksi)  | 29000 |
| lp (in^4) | 1820  |

$$x_z(z) = A_x \frac{Q_g T^3}{E_p I_p} + B_x \frac{M_g T^2}{E_p I_p}$$

| Ax | x(z) (in) |          |  |  |  |  |  |  |
|----|-----------|----------|--|--|--|--|--|--|
|    | 2.435     | 0.074143 |  |  |  |  |  |  |
|    | 2.273     | 0.06921  |  |  |  |  |  |  |
|    | 2.112     | 0.064308 |  |  |  |  |  |  |
|    | 1.952     | 0.059436 |  |  |  |  |  |  |
|    | 1.796     | 0.054686 |  |  |  |  |  |  |
|    | 1.644     | 0.050058 |  |  |  |  |  |  |
|    | 1.496     | 0.045552 |  |  |  |  |  |  |
|    | 1.353     | 0.041197 |  |  |  |  |  |  |
|    | 1.216     | 0.037026 |  |  |  |  |  |  |
|    | 1.086     | 0.033068 |  |  |  |  |  |  |
|    | 0.962     | 0.029292 |  |  |  |  |  |  |
|    | 0.738     | 0.022471 |  |  |  |  |  |  |
|    | 0.544     | 0.016564 |  |  |  |  |  |  |
|    | 0.381     | 0.011601 |  |  |  |  |  |  |
|    | 0.247     | 0.007521 |  |  |  |  |  |  |
|    | 0.142     | 0.004324 |  |  |  |  |  |  |
|    | -0.075    | -0.00228 |  |  |  |  |  |  |
|    | -0.05     | -0.00152 |  |  |  |  |  |  |
|    | -0.009    | -0.00027 |  |  |  |  |  |  |

## Pile Foundation Moment at depth z

| T (ft)           | 4.455             | Am | n      | M(z) (ft*kip) |
|------------------|-------------------|----|--------|---------------|
| Qg (kip)         | 5                 |    | 0      | 0             |
|                  |                   |    | 0.1    | 2.2275        |
|                  |                   |    | 0.198  | 4.41045       |
| $M_z(z) = A_m Q$ | $Q_g I + B_m M_g$ |    | 0.291  | 6.482025      |
|                  |                   |    | 0.379  | 8.442225      |
|                  |                   |    | 0.459  | 10.224225     |
|                  |                   |    | 0.532  | 11.8503       |
|                  |                   |    | 0.595  | 13.253625     |
|                  |                   |    | 0.649  | 14.456475     |
|                  |                   |    | 0.693  | 15.436575     |
|                  |                   |    | 0.727  | 16.193925     |
|                  |                   |    | 0.767  | 17.084925     |
|                  |                   |    | 0.772  | 17.1963       |
|                  |                   |    | 0.746  | 16.61715      |
|                  |                   |    | 0.696  | 15.5034       |
|                  |                   |    | 0.628  | 13.9887       |
|                  |                   |    | 0.225  | 5.011875      |
|                  |                   |    | 0      | 0             |
|                  |                   |    | -0.033 | -0.735075     |

# Imagineering Inc.

Appendix E: Cost Estimates

HMS Project No. 22045

## ROM CONCEPT DESIGN SUBMITTAL CONSTRUCTION COST ESTIMATE

### RESIDENTIAL OBSERVATION TOWER ANCHOR POINT, ALASKA

PREPARED FOR:

UAA Capstone Design Group Michele Lott, John Scott, Jayci VanDehey 2900 Spirit Drive Anchorage, Alaska 99508

April 7, 2022



4103 Minnesota Drive • Anchorage, Alaska 99503 p: 907.561.1653 • f: 907.562.0420 • e: mail@hmsalaska.com

HMS Project No.: 22045

NOTES REGARDING THE PREPARATION OF THIS ESTIMATE

#### DRAWINGS AND DOCUMENTS

| Level of Documents: | (4) concept renderings                                                                        |
|---------------------|-----------------------------------------------------------------------------------------------|
| Date:               | April 1, 2022                                                                                 |
| Provided By:        | UAA Capstone Design Group (Michele Lott, John Scott, and Jayci VanDehey) of Anchorage, Alaska |

#### RATES

Pricing is based on current material, equipment and freight costs.

| Labor Rates:  | A.S. Title 36 working 60 hours per week |
|---------------|-----------------------------------------|
| Premium Time: | 16.70%                                  |

#### **BIDDING ASSUMPTIONS**

Contract:Standard construction contract without restrictive bidding clausesBidding Situation:Competitive bids assumedBid Date:January 2023Start of Construction:April 2023Months to Complete:Within (4) months completion

#### **EXCLUDED COSTS**

- 1. A/E design fees
- 2. Administrative and management costs
- 3. Furniture, furnishings and equipment
- 4. Remediation of contaminated soils or abatement of any hazardous materials, if found during construction
- 5. Site preparation and improvements (except those specifically included with Substructure scope)
- 6. Utilities, including electrical, water, waste, and telecommunications
- 7. Interior finishes
- 8. Weather protection to tower structure in Design C

HMS Project No.: 22045

### NOTES REGARDING THE PREPARATION OF THIS ESTIMATE (Continued)

#### GENERAL

When included in HMS Inc.'s scope of services, opinions or estimates of probable construction costs are prepared on the basis of HMS Inc.'s experience and qualifications and represent HMS Inc.'s judgment as a professional generally familiar with the industry. However, since HMS Inc. has no control over the cost of labor, materials, equipment or services furnished by others, over contractor's methods of determining prices, or over competitive bidding or market conditions, HMS Inc. cannot and does not guarantee that proposals, bids, or actual construction cost will not vary from HMS Inc.'s opinions or estimates of probable construction cost.

This estimate assumes normal escalation based on the current economic climate. HMS Inc. will continue to monitor this, as well as other international, domestic and local events, and the resulting construction climate, and will adjust costs and contingencies as deemed appropriate.

Due to the rapidly evolving nature of the COVID-19 coronavirus pandemic and its affect on the economy, and more specifically the construction industry, HMS Inc. is incorporating an additional contingency titled '**Unique Market Risk**'. The amount provided for in the estimate will be adjusted as the situation continues to change and the effect on construction pricing becomes more quantifiable.

#### **GROSS FLOOR AREA**

OBSERVATION TOWER Tower Deck

<u>900</u> SF

HMS Project No.: 22045

#### CONCEPT DESIGN COST SUMMARY

|                                                  | Total        | Cost per SF | Area   |
|--------------------------------------------------|--------------|-------------|--------|
| OPTION 1 - SHALLOW FOUNDATION/DESIGN & STRUCTURE | \$ 1 968 552 | \$ 2 187    | 900 SE |
|                                                  | ψ 1,000,002  | ψ 2,101     | 000 01 |
| OPTION 2 - PILE FOUNDATION/DESIGN A STRUCTURE    | 2,069,469    | 2,299       | 900 SF |
|                                                  |              |             |        |
| OPTION 3 - SHALLOW FOUNDATION/DESIGN B STRUCTURE | 1,958,892    | 2,177       | 900 SF |
|                                                  | 2 050 909    | 2 200       | 000 85 |
| OF HON 4 - FILE FOUNDATION/DESIGN B STRUCTURE    | 2,039,000    | 2,209       | 900 SF |
| OPTION 5 - SHALLOW FOUNDATION/DESIGN C STRUCTURE | 1,460,021    | 1,622       | 900 SF |
|                                                  |              |             |        |
| OPTION 6 - PILE FOUNDATION/DESIGN C STRUCTURE    | 1,560,937    | 1,734       | 900 SF |
|                                                  |              |             |        |

PAGE 4

#### RESIDENTIAL OBSERVATION TOWER ANCHOR POINT, ALASKA ROM CONCEPT DESIGN SUBMITTAL CONSTRUCTION COST ESTIMATE

HMS Project No.: 22045

| OPTION 1 - SHALLOW FOUNDATION/                             |          |      | MATERIAL |         | LABOF   | 2       | TOTAL     | TOTAL          |
|------------------------------------------------------------|----------|------|----------|---------|---------|---------|-----------|----------------|
| DESIGN A STRUCTURE                                         | QUANTITY | UNIT | RATE     | TOTAL   | RATE    | TOTAL   | UNIT RATE | MATERIAL/LABOR |
|                                                            |          |      | \$       | \$      | \$      | \$      | \$        | \$             |
| SUBSTRUCTURE                                               |          |      |          |         |         |         |           |                |
| Note: Excludes site pad preparation.                       |          |      |          |         |         |         |           |                |
| Excavate, backfill and dispose for footings/foundation     | 201      | CY   | 2.50     | 503     | 13.50   | 2,714   | 16.00     | 3,217          |
| Concrete spread footings (4)                               | 42       | CY   | 175.00   | 7,350   | 100.00  | 4,200   | 275.00    | 11,550         |
| Concrete pilasters (4)                                     | 6        | CY   | 175.00   | 1,050   | 95.00   | 570     | 270.00    | 1,620          |
| Concrete tie beams                                         | 27       | CY   | 175.00   | 4,725   | 120.00  | 3,240   | 295.00    | 7,965          |
| Concrete waste (5%)                                        | 4        | CY   | 175.00   | 700     | 100.00  | 400     | 275.00    | 1,100          |
| Pump concrete                                              | 79       | CY   | 50.00    | 3,950   |         |         | 50.00     | 3,950          |
| Bar reinforcement                                          | 6,000    | LBS  | 1.15     | 6,900   | 0.80    | 4,800   | 1.95      | 11,700         |
| Form footings, tie beams, and bases                        | 1,176    | SF   | 4.00     | 4,704   | 5.20    | 6,115   | 9.20      | 10,819         |
| <u>SUPERSTRUCTURE</u>                                      |          |      |          |         |         |         |           |                |
| Tower Construction                                         |          |      |          |         |         |         |           |                |
| W-beams                                                    | 92,000   | LBS  | 2.75     | 253,000 | 1.25    | 115,000 | 4.00      | 368,000        |
| Miscellaneous angles, bolts, and connections (15% assumed) | 13,800   | LBS  | 2.65     | 36,570  | 2.20    | 30,360  | 4.85      | 66,930         |
| Crane and operator                                         | 2        | WK   | 5500.00  | 11,000  | 3600.00 | 7,200   | 9100.00   | 18,200         |

#### RESIDENTIAL OBSERVATION TOWER ANCHOR POINT, ALASKA ROM CONCEPT DESIGN SUBMITTAL CONSTRUCTION COST ESTIMATE

HMS Project No.: 22045

| OPTION 1 - SHALLOW FOUNDATION/<br>DESIGN A STRUCTURE   | QUANTITY | MATERIAL |        |             | LABOR   |             | TOTAL           | TOTAL                |
|--------------------------------------------------------|----------|----------|--------|-------------|---------|-------------|-----------------|----------------------|
|                                                        |          | UNIT     | RATE   | TOTAL<br>\$ | RATE    | TOTAL<br>\$ | UNIT RATE<br>\$ | MATERIAL/LABOR<br>\$ |
|                                                        |          |          | \$     |             | \$      |             |                 |                      |
| SUPERSTRUCTURE (Continued)                             |          |          |        |             |         |             |                 |                      |
| Floor Construction                                     |          |          |        |             |         |             |                 |                      |
| 14" BCI 90 joists                                      | 1,444    | LF       | 4.75   | 6,859       | 1.60    | 2,310       | 6.35            | 9,169                |
| Joist blockings                                        | 75       | LF       | 2.40   | 180         | 1.90    | 143         | 4.30            | 323                  |
| R-21 batt insulation                                   | 900      | SF       | 0.85   | 765         | 0.45    | 405         | 1.30            | 1,170                |
| 2"x6" tongue and groove decking                        | 1,444    | SF       | 8.50   | 12,274      | 3.65    | 5,271       | 12.15           | 17,545               |
| 5/8" plywood soffit sheathing                          | 900      | SF       | 1.95   | 1,755       | 1.25    | 1,125       | 3.20            | 2,880                |
| Miscellaneous joist hangers, connection hardware, etc. | 1        | LOT      | 450.00 | 450         | 700.00  | 700         | 1150.00         | 1,150                |
| Roof Construction                                      |          |          |        |             |         |             |                 |                      |
| Glulam beam roof framing                               | 900      | SF       | 45.25  | 40,725      | 30.25   | 27,225      | 75.50           | 67,950               |
| 5/8" roof sheathing                                    | 900      | SF       | 1.95   | 1,755       | 0.95    | 855         | 2.90            | 2,610                |
| Brackets, bolts, connection hardware, etc.             | 1        | LOT      | 800.00 | 800         | 1120.00 | 1,120       | 1920.00         | 1,920                |
| Stair Construction                                     |          |          |        |             |         |             |                 |                      |
| 42" wide grate stair treads                            | 108      | EA       | 250.00 | 27,000      | 70.00   | 7,560       | 320.00          | 34,560               |
| Galvanized metal concrete filled landing               | 96       | SF       | 50.40  | 4,838       | 20.00   | 1,920       | 70.40           | 6,758                |
| OPTION 1 - SHALLOW FOUNDATION/                         |          |      | MATERI  | AL     | LABOR  | 2     | TOTAL     | TOTAL          |
|--------------------------------------------------------|----------|------|---------|--------|--------|-------|-----------|----------------|
| DESIGN A STRUCTURE                                     | QUANTITY | UNIT | RATE    | TOTAL  | RATE   | TOTAL | UNIT RATE | MATERIAL/LABOR |
|                                                        |          |      | \$      | \$     | \$     | \$    | \$        | \$             |
| SUPERSTRUCTURE (Continued)                             |          |      |         |        |        |       |           |                |
| Stair Construction (Continued)                         |          |      |         |        |        |       |           |                |
| 42" high painted steel pipe railings and posts         | 266      | LF   | 99.00   | 26,334 | 28.00  | 7,448 | 127.00    | 33,782         |
| EXTERIOR CLOSURE                                       |          |      |         |        |        |       |           |                |
| Exterior Walls                                         |          |      |         |        |        |       |           |                |
| 2"x6" wood studs, 16" o/c, including plates            | 2,280    | LF   | 2.65    | 6,042  | 1.50   | 3,420 | 4.15      | 9,462          |
| 1/2" plywood sheathing                                 | 1,920    | SF   | 1.70    | 3,264  | 1.30   | 2,496 | 3.00      | 5,760          |
| T1-11 siding, painted                                  | 1,920    | SF   | 3.63    | 6,970  | 2.46   | 4,723 | 6.09      | 11,693         |
| Vapor retarder                                         | 1,920    | SF   | 0.12    | 230    | 0.15   | 288   | 0.27      | 518            |
| Air barrier                                            | 1,920    | SF   | 0.85    | 1,632  | 0.65   | 1,248 | 1.50      | 2,880          |
| 6" batt insulation                                     | 1,920    | SF   | 0.85    | 1,632  | 0.60   | 1,152 | 1.45      | 2,784          |
| 5/8" gypboard, inside (tape/texture excluded)          | 1,920    | SF   | 0.66    | 1,267  | 1.55   | 2,976 | 2.21      | 4,243          |
| Exterior Openings                                      |          |      |         |        |        |       |           |                |
| 3'0"x6'8" pre-hung insulated fiberglass door, complete | 1        | EA   | 1300.00 | 1,300  | 250.00 | 250   | 1550.00   | 1,550          |
| Vinyl windows (4)                                      | 240      | SF   | 60.00   | 14,400 | 10.50  | 2,520 | 70.50     | 16,920         |

HMS Project No.: 22045

|                                                                                                |          |      |           |            |       | _          |           | ΤΟΤΛΙ          |
|------------------------------------------------------------------------------------------------|----------|------|-----------|------------|-------|------------|-----------|----------------|
| OPTION 1 - SHALLOW FOUNDATION/                                                                 |          |      | MATER     | IAL        | LABOI | R<br>      | TOTAL     | TOTAL          |
| DESIGN A STRUCTURE                                                                             | QUANTITY | UNIT | RATE      | TOTAL      | RATE  | TOTAL      | UNIT RATE | MATERIAL/LABOR |
|                                                                                                |          |      | \$        | \$         | \$    | \$         | \$        | \$             |
| ROOFING SYSTEMS                                                                                |          |      |           |            |       |            |           |                |
| Corrugated metal panel roofing system, including insulation and flashings (excludes skylights) | 900      | SF   | 6.80      | 6,120      | 4.35  | 3,915      | 11.15     | 10,035         |
| MISCELLANEOUS                                                                                  |          |      |           |            |       |            |           |                |
| Equipment and fuel allowance                                                                   | 2        | MOS  | 112000.00 | 224,000    |       |            | 112000.00 | 224,000        |
| SUBTOTAL:                                                                                      |          |      | -         | \$ 721,044 |       | \$ 253,669 |           | \$ 974,713     |
| Labor Premium Time                                                                             | 16.70%   |      |           |            |       | 42,363     |           | 42,363         |
| SUBTOTAL:                                                                                      |          |      |           |            |       |            |           | \$ 1,017,076   |
| General Requirements, Overhead, and Profit                                                     | 37.00%   |      |           |            |       |            |           | 376,318        |
| Unique Market Risk                                                                             | 5.00%    |      |           |            |       |            |           | 69,670         |
| Estimator's Contingency                                                                        | 30.00%   |      |           |            |       |            |           | 438,919        |
| Escalation                                                                                     | 3.50%    |      |           |            |       |            |           | 66,569         |

| TOTAL ESTIMATED COST: \$1.96 |                       |           |
|------------------------------|-----------------------|-----------|
|                              | TOTAL ESTIMATED COST: | \$ 1,968, |

,552

| OPTION 2 - PILE FOUNDATION/DESIGN                                  |          |      | MATERIA | 4 <i>L</i> | LABOF   | ?         | TOTAL     | TOTAL          |
|--------------------------------------------------------------------|----------|------|---------|------------|---------|-----------|-----------|----------------|
| A STRUCTURE                                                        | QUANTITY | UNIT | RATE    | TOTAL      | RATE    | TOTAL     | UNIT RATE | IATERIAL/LABOR |
|                                                                    |          |      | \$      | \$         | \$      | \$        | \$        | \$             |
| SUBSTRUCTURE                                                       |          |      |         |            |         |           |           |                |
| Note: By subcontractor. Excludes site pad prepar                   | ration.  |      |         |            |         |           |           |                |
| Excavate, backfill and dispose for tie beams                       | 47       | CY   | 2.50    | 118        | 13.50   | 635       | 16.00     | 753            |
| 16" diameter, 83 lbs./LF steel pile (assumes good soil conditions) | 200      | VLF  | 257.30  | 51,460     | 37.14   | 7,428     | 294.44    | 58,888         |
| Pile points, 16" diameter, welded to pile                          | 4        | EA   | 380.00  | 1,520      | 215.00  | 860       | 595.00    | 2,380          |
| Pile rig mobilization/demobilization costs                         | 1        | LOT  | 2500.00 | 2,500      | 4000.00 | 4,000     | 6500.00   | 6,500          |
| Concrete tie beam                                                  | 27       | CY   | 175.00  | 4,725      | 90.00   | 2,430     | 265.00    | 7,155          |
| Concrete waste (5%)                                                | 2        | CY   | 175.00  | 350        | 90.00   | 180       | 265.00    | 530            |
| Pump concrete                                                      | 29       | CY   | 50.00   | 1,450      |         |           | 50.00     | 1,450          |
| Bar reinforcement                                                  | 2,160    | LBS  | 1.15    | 2,484      | 0.80    | 1,728     | 1.95      | 4,212          |
| Form tie beams                                                     | 500      | SF   | 4.00    | 2,000      | 5.20    | 2,600     | 9.20      | 4,600          |
| SUBTOTAL:                                                          |          |      | _       | \$ 66,607  |         | \$ 19,861 |           | \$ 86,468      |
| Labor Premium Time                                                 | 16.70%   |      |         |            |         | 3,317     |           | 3,317          |
| SUBTOTAL:                                                          |          |      | -       | \$ 66,607  |         | \$ 23,178 |           | \$ 89,785      |

| OPTION 2 - PILE FOUNDATION/DESIGN                          |          |      | MATERI  | AL        | LABO    | र         | TOTAL     | TOTAL          |
|------------------------------------------------------------|----------|------|---------|-----------|---------|-----------|-----------|----------------|
| A STRUCTURE                                                | QUANTITY | UNIT | RATE    | TOTAL     | RATE    | TOTAL     | UNIT RATE | 1ATERIAL/LABOR |
|                                                            |          |      | \$      | \$        | \$      | \$        | \$        | \$             |
| Subcontractor's Overhead and Profit on Material and Labor  | 20.00%   |      |         | 13,321    |         | 4,636     |           | 17,957         |
| SUBTOTAL SUBSTRUCTURE:                                     |          |      | -       | \$ 79,928 |         | \$ 27,814 |           | \$ 107,742     |
| <u>SUPERSTRUCTURE</u>                                      |          |      |         |           |         |           |           |                |
| Tower Construction                                         |          |      |         |           |         |           |           |                |
| W-beams                                                    | 92,000   | LBS  | 2.75    | 253,000   | 1.25    | 115,000   | 4.00      | 368,000        |
| Miscellaneous angles, bolts, and connections (15% assumed) | 13,800   | LBS  | 2.65    | 36,570    | 2.20    | 30,360    | 4.85      | 66,930         |
| Crane and operator                                         | 2        | WK   | 5500.00 | 11,000    | 3600.00 | 7,200     | 9100.00   | 18,200         |
| Floor Construction                                         |          |      |         |           |         |           |           |                |
| 14" BCI 90 joists                                          | 1,444    | LF   | 4.75    | 6,859     | 1.60    | 2,310     | 6.35      | 9,169          |
| Joist blockings                                            | 75       | LF   | 2.40    | 180       | 1.90    | 143       | 4.30      | 323            |
| R-21 batt insulation                                       | 900      | SF   | 0.85    | 765       | 0.45    | 405       | 1.30      | 1,170          |
| 2"x6" tongue and groove decking                            | 1,444    | SF   | 8.50    | 12,274    | 3.65    | 5,271     | 12.15     | 17,545         |
| 5/8" plywood soffit sheathing                              | 900      | SF   | 1.95    | 1,755     | 1.25    | 1,125     | 3.20      | 2,880          |
| Miscellaneous joist hangers, connection hardware, etc.     | 1        | LOT  | 450.00  | 450       | 700.00  | 700       | 1150.00   | 1,150          |

HMS Project No.: 22045

| <b>OPTION 2 - PILE FOUNDATION/DESIGN</b>       |          |      | MATERI     | 4L     | LABOF   | ?      | TOTAL     | TOTAL                |
|------------------------------------------------|----------|------|------------|--------|---------|--------|-----------|----------------------|
| A STRUCTURE                                    | QUANTITY | UNIT | RATE<br>\$ | TOTAL  | RATE    | TOTAL  | UNIT RATE | IATERIAL/LABOR<br>\$ |
|                                                |          |      | Ψ          | Ψ      | ψ       | Ψ      | Ψ         | ψ                    |
| EXTERIOR CLOSURE (Continued)                   |          |      |            |        |         |        |           |                      |
| Roof Construction                              |          |      |            |        |         |        |           |                      |
| Glulam beam roof framing                       | 900      | SF   | 45.25      | 40,725 | 30.25   | 27,225 | 75.50     | 67,950               |
| 5/8" roof sheathing                            | 900      | SF   | 1.95       | 1,755  | 0.95    | 855    | 2.90      | 2,610                |
| Brackets, bolts, connection hardware, etc.     | 1        | LOT  | 800.00     | 800    | 1120.00 | 1,120  | 1920.00   | 1,920                |
| Stair Construction                             |          |      |            |        |         |        |           |                      |
| 42" wide grate stair treads                    | 108      | EA   | 250.00     | 27,000 | 70.00   | 7,560  | 320.00    | 34,560               |
| Galvanized metal concrete filled landing       | 96       | SF   | 50.40      | 4,838  | 20.00   | 1,920  | 70.40     | 6,758                |
| 42" high painted steel pipe railings and posts | 266      | LF   | 99.00      | 26,334 | 28.00   | 7,448  | 127.00    | 33,782               |
| Exterior Walls                                 |          |      |            |        |         |        |           |                      |
| 2"x6" wood studs, 16" o/c, including plates    | 2,280    | LF   | 2.65       | 6,042  | 1.50    | 3,420  | 4.15      | 9,462                |
| 1/2" plywood sheathing                         | 1,920    | SF   | 1.70       | 3,264  | 1.30    | 2,496  | 3.00      | 5,760                |
| T1-11 siding, painted                          | 1,920    | SF   | 3.63       | 6,970  | 2.46    | 4,723  | 6.09      | 11,693               |
| Vapor retarder                                 | 1,920    | SF   | 0.12       | 230    | 0.15    | 288    | 0.27      | 518                  |
| Air barrier                                    | 1,920    | SF   | 0.85       | 1,632  | 0.65    | 1,248  | 1.50      | 2,880                |

HMS Project No.: 22045

| OPTION 2 - PILE FOUNDATION/DESIGN                                                              |          |        | MATERI    | IAL        | LABO   | R          | TOTAL     | TOTAL          |
|------------------------------------------------------------------------------------------------|----------|--------|-----------|------------|--------|------------|-----------|----------------|
| A STRUCTURE                                                                                    | QUANTITY | UNIT   | RATE      | TOTAL      | RATE   | TOTAL      | UNIT RATE | 1ATERIAL/LABOR |
|                                                                                                |          |        | \$        | \$         | \$     | \$         | \$        | \$             |
| EXTERIOR CLOSURE (Continued)                                                                   |          |        |           |            |        |            |           |                |
| Exterior Walls (Continued)                                                                     |          |        |           |            |        |            |           |                |
| 6" batt insulation                                                                             | 1,920    | SF     | 0.85      | 1,632      | 0.60   | 1,152      | 1.45      | 2,784          |
| 5/8" gypboard, inside (tape/texture excluded)                                                  | 1,920    | SF     | 0.66      | 1,267      | 1.55   | 2,976      | 2.21      | 4,243          |
| Exterior Openings                                                                              |          |        |           |            |        |            |           |                |
| 3'0"x6'8" pre-hung insulated fiberglass door, complete                                         | 1        | EA     | 1300.00   | 1,300      | 250.00 | 250        | 1550.00   | 1,550          |
| Vinyl windows (4)                                                                              | 240      | SF     | 60.00     | 14,400     | 10.50  | 2,520      | 70.50     | 16,920         |
| ROOFING SYSTEMS                                                                                |          |        |           |            |        |            |           |                |
| Corrugated metal panel roofing system, including insulation and flashings (excludes skylights) | 900      | SF     | 6.80      | 6,120      | 4.35   | 3,915      | 11.15     | 10,035         |
| MISCELLANEOUS                                                                                  |          |        |           |            |        |            |           |                |
| Equipment and fuel allowance                                                                   | 2        | MOS    | 112000.00 | 224,000    |        |            | 112000.00 | 224,000        |
| SUBTOTAL:                                                                                      |          |        | -         | \$ 691,162 |        | \$ 231,630 |           | \$ 922,792     |
| Labor Premium Time                                                                             | 16.70%   |        |           |            |        | 38,682     |           | 38,682         |
| SUBTOTAL SUPERSTRUCTURE/EXTERIOR CLO                                                           | OSURE/RO | OFING: | -         | \$ 691,162 |        | \$ 270,312 |           | \$ 961,474     |
| SUBTOTAL OPTION 2:                                                                             |          |        |           |            |        |            |           | \$ 1,069,216   |

HMS Project No.: 22045

| OPTION 2 - PILE FOUNDATION/DESIGN          |          |      | MATERIAL   |             | LABO       | DR          | TOTAL           | TOTAL                |
|--------------------------------------------|----------|------|------------|-------------|------------|-------------|-----------------|----------------------|
| A STRUCTURE                                | QUANTITY | UNIT | RATE<br>\$ | TOTAL<br>\$ | RATE<br>\$ | TOTAL<br>\$ | UNIT RATE<br>\$ | IATERIAL/LABOR<br>\$ |
| General Requirements, Overhead, and Profit | 37.00%   |      |            |             |            |             |                 | 395,610              |
| Unique Market Risk                         | 5.00%    |      |            |             |            |             |                 | 73,241               |
| Estimator's Contingency                    | 30.00%   |      |            |             |            |             |                 | 461,420              |
| Escalation                                 | 3.50%    |      |            |             |            |             |                 | 69,982               |

HMS Project No.: 22045

| OPTION 3 - SHALLOW FOUNDATION/                             |          |      | MATERI  | AL      | LABOF   | 7       | TOTAL     | TOTAL          |
|------------------------------------------------------------|----------|------|---------|---------|---------|---------|-----------|----------------|
| DESIGN B STRUCTURE                                         | QUANTITY | UNIT | RATE    | TOTAL   | RATE    | TOTAL   | UNIT RATE | MATERIAL/LABOR |
|                                                            |          |      | \$      | \$      | \$      | \$      | \$        | \$             |
| SUBSTRUCTURE                                               |          |      |         |         |         |         |           |                |
| Note: Excludes site pad preparation.                       |          |      |         |         |         |         |           |                |
| Excavate, backfill and dispose for footings/foundation     | 201      | CY   | 2.50    | 503     | 13.50   | 2,714   | 16.00     | 3,217          |
| Concrete spread footings (4)                               | 42       | CY   | 175.00  | 7,350   | 100.00  | 4,200   | 275.00    | 11,550         |
| Concrete pilasters (4)                                     | 6        | CY   | 175.00  | 1,050   | 95.00   | 570     | 270.00    | 1,620          |
| Concrete tie beams                                         | 27       | CY   | 175.00  | 4,725   | 120.00  | 3,240   | 295.00    | 7,965          |
| Concrete waste (5%)                                        | 4        | CY   | 175.00  | 700     | 100.00  | 400     | 275.00    | 1,100          |
| Pump concrete                                              | 79       | CY   | 50.00   | 3,950   |         |         | 50.00     | 3,950          |
| Bar reinforcement                                          | 6,000    | LBS  | 1.15    | 6,900   | 0.80    | 4,800   | 1.95      | 11,700         |
| Form footings, tie beams, and bases                        | 1,176    | SF   | 4.00    | 4,704   | 5.20    | 6,115   | 9.20      | 10,819         |
| SUPERSTRUCTURE                                             |          |      |         |         |         |         |           |                |
| Tower Construction                                         |          |      |         |         |         |         |           |                |
| W-beams                                                    | 91,000   | LBS  | 2.75    | 250,250 | 1.25    | 113,750 | 4.00      | 364,000        |
| Miscellaneous angles, bolts, and connections (15% assumed) | 13,650   | LBS  | 2.65    | 36,173  | 2.20    | 30,030  | 4.85      | 66,203         |
| Crane and operator                                         | 2        | WK   | 5500.00 | 11,000  | 3600.00 | 7,200   | 9100.00   | 18,200         |

HMS Project No.: 22045

| OPTION 3 - SHALLOW FOUNDATION/                         |          |      | MATERI | AL     | LABOF   | 2      | TOTAL     | TOTAL          |
|--------------------------------------------------------|----------|------|--------|--------|---------|--------|-----------|----------------|
| DESIGN B STRUCTURE                                     | QUANTITY | UNIT | RATE   | TOTAL  | RATE    | TOTAL  | UNIT RATE | MATERIAL/LABOR |
|                                                        |          |      | \$     | \$     | \$      | \$     | \$        | \$             |
| SUPERSTRUCTURE (Continued)                             |          |      |        |        |         |        |           |                |
| Floor Construction                                     |          |      |        |        |         |        |           |                |
| 14" BCI 90 joists                                      | 1,444    | LF   | 4.75   | 6,859  | 1.60    | 2,310  | 6.35      | 9,169          |
| Joist blockings                                        | 75       | LF   | 2.40   | 180    | 1.90    | 143    | 4.30      | 323            |
| R-21 batt insulation                                   | 900      | SF   | 0.85   | 765    | 0.45    | 405    | 1.30      | 1,170          |
| 2"x6" tongue and groove decking                        | 1,444    | SF   | 8.50   | 12,274 | 3.65    | 5,271  | 12.15     | 17,545         |
| 5/8" plywood soffit sheathing                          | 900      | SF   | 1.95   | 1,755  | 1.25    | 1,125  | 3.20      | 2,880          |
| Miscellaneous joist hangers, connection hardware, etc. | 1        | LOT  | 450.00 | 450    | 700.00  | 700    | 1150.00   | 1,150          |
| Roof Construction                                      |          |      |        |        |         |        |           |                |
| Glulam beam roof framing                               | 900      | SF   | 45.25  | 40,725 | 30.25   | 27,225 | 75.50     | 67,950         |
| 5/8" roof sheathing                                    | 900      | SF   | 1.95   | 1,755  | 0.95    | 855    | 2.90      | 2,610          |
| Brackets, bolts, connection hardware, etc.             | 1        | LOT  | 800.00 | 800    | 1120.00 | 1,120  | 1920.00   | 1,920          |
| Stair Construction                                     |          |      |        |        |         |        |           |                |
| 42" wide grate stair treads                            | 108      | EA   | 250.00 | 27,000 | 70.00   | 7,560  | 320.00    | 34,560         |
| Galvanized metal concrete filled landing               | 96       | SF   | 50.40  | 4,838  | 20.00   | 1,920  | 70.40     | 6,758          |

| OPTION 3 - SHALLOW FOUNDATION/                         |          |      | MATERI  | AL     | LABOF  | 2     | TOTAL     | TOTAL          |
|--------------------------------------------------------|----------|------|---------|--------|--------|-------|-----------|----------------|
| DESIGN B STRUCTURE                                     | QUANTITY | UNIT | RATE    | TOTAL  | RATE   | TOTAL | UNIT RATE | MATERIAL/LABOR |
|                                                        |          |      | \$      | \$     | \$     | \$    | \$        | \$             |
| SUPERSTRUCTURE (Continued)                             |          |      |         |        |        |       |           |                |
| Stair Construction (Continued)                         |          |      |         |        |        |       |           |                |
| 42" high painted steel pipe railings and posts         | 266      | LF   | 99.00   | 26,334 | 28.00  | 7,448 | 127.00    | 33,782         |
| EXTERIOR CLOSURE                                       |          |      |         |        |        |       |           |                |
| Exterior Walls                                         |          |      |         |        |        |       |           |                |
| 2"x6" wood studs, 16" o/c, including plates            | 2,280    | LF   | 2.65    | 6,042  | 1.50   | 3,420 | 4.15      | 9,462          |
| 1/2" plywood sheathing                                 | 1,920    | SF   | 1.70    | 3,264  | 1.30   | 2,496 | 3.00      | 5,760          |
| T1-11 siding, painted                                  | 1,920    | SF   | 3.63    | 6,970  | 2.46   | 4,723 | 6.09      | 11,693         |
| Vapor retarder                                         | 1,920    | SF   | 0.12    | 230    | 0.15   | 288   | 0.27      | 518            |
| Air barrier                                            | 1,920    | SF   | 0.85    | 1,632  | 0.65   | 1,248 | 1.50      | 2,880          |
| 6" batt insulation                                     | 1,920    | SF   | 0.85    | 1,632  | 0.60   | 1,152 | 1.45      | 2,784          |
| 5/8" gypboard, inside (tape/texture excluded)          | 1,920    | SF   | 0.66    | 1,267  | 1.55   | 2,976 | 2.21      | 4,243          |
| Exterior Openings                                      |          |      |         |        |        |       |           |                |
| 3'0"x6'8" pre-hung insulated fiberglass door, complete | 1        | EA   | 1300.00 | 1,300  | 250.00 | 250   | 1550.00   | 1,550          |
| Vinyl windows (4)                                      | 240      | SF   | 60.00   | 14,400 | 10.50  | 2,520 | 70.50     | 16,920         |

| OPTION 3 - SHALLOW FOUNDATION/                                                                 |          |      | MATER     | IAL        | LABOI | २          | TOTAL     | TOTAL          |
|------------------------------------------------------------------------------------------------|----------|------|-----------|------------|-------|------------|-----------|----------------|
| DESIGN B STRUCTURE                                                                             | QUANTITY | UNIT | RATE      | TOTAL      | RATE  | TOTAL      | UNIT RATE | MATERIAL/LABOR |
|                                                                                                |          |      | \$        | \$         | \$    | \$         | \$        | \$             |
| ROOFING SYSTEMS                                                                                |          |      |           |            |       |            |           |                |
| Corrugated metal panel roofing system, including insulation and flashings (excludes skylights) | 900      | SF   | 6.80      | 6,120      | 4.35  | 3,915      | 11.15     | 10,035         |
| MISCELLANEOUS                                                                                  |          |      |           |            |       |            |           |                |
| Equipment and fuel allowance                                                                   | 2        | MOS  | 112000.00 | 224,000    |       |            | 112000.00 | 224,000        |
| SUBTOTAL:                                                                                      |          |      | -         | \$ 717,897 |       | \$ 252,089 |           | \$ 969,986     |
| Labor Premium Time                                                                             | 16.70%   |      |           |            |       | 42,099     |           | 42,099         |
| SUBTOTAL:                                                                                      |          |      |           |            |       |            |           | \$ 1,012,085   |
| General Requirements, Overhead, and Profit                                                     | 37.00%   |      |           |            |       |            |           | 374,471        |
| Unique Market Risk                                                                             | 5.00%    |      |           |            |       |            |           | 69,328         |
| Estimator's Contingency                                                                        | 30.00%   |      |           |            |       |            |           | 436,765        |
| Escalation                                                                                     | 3.50%    |      |           |            |       |            |           | 66,243         |

| OPTION 4 - PILE FOUNDATION/DESIGN                                  |          |      | MATERI     | 4 <i>L</i>  | LABOR      | 2           | TOTAL     | TOTAL                |
|--------------------------------------------------------------------|----------|------|------------|-------------|------------|-------------|-----------|----------------------|
| B STRUCTURE                                                        | QUANTITY | UNIT | RATE<br>\$ | TOTAL<br>\$ | RATE<br>\$ | TOTAL<br>\$ | UNIT RATE | MATERIAL/LABOR<br>\$ |
|                                                                    |          |      | Ý          | Ŷ           | Ý          | Ψ           | Ψ         | Ý                    |
| SUBSTRUCTURE                                                       |          |      |            |             |            |             |           |                      |
| Note: By subcontractor. Excludes site pad prepara                  | ation.   |      |            |             |            |             |           |                      |
| Excavate, backfill and dispose for tie beams                       | 47       | CY   | 2.50       | 118         | 13.50      | 635         | 16.00     | 753                  |
| 16" diameter, 83 lbs./LF steel pile (assumes good soil conditions) | 200      | VLF  | 257.30     | 51,460      | 37.14      | 7,428       | 294.44    | 58,888               |
| Pile points, 16" diameter, welded to pile                          | 4        | EA   | 380.00     | 1,520       | 215.00     | 860         | 595.00    | 2,380                |
| Pile rig mobilization/demobilization costs                         | 1        | LOT  | 2500.00    | 2,500       | 4000.00    | 4,000       | 6500.00   | 6,500                |
| Concrete tie beam                                                  | 27       | CY   | 175.00     | 4,725       | 90.00      | 2,430       | 265.00    | 7,155                |
| Concrete waste (5%)                                                | 2        | CY   | 175.00     | 350         | 90.00      | 180         | 265.00    | 530                  |
| Pump concrete                                                      | 29       | CY   | 50.00      | 1,450       |            |             | 50.00     | 1,450                |
| Bar reinforcement                                                  | 2,160    | LBS  | 1.15       | 2,484       | 0.80       | 1,728       | 1.95      | 4,212                |
| Form tie beams                                                     | 500      | SF   | 4.00       | 2,000       | 5.20       | 2,600       | 9.20      | 4,600                |
| SUBTOTAL:                                                          |          |      | -          | \$ 66,607   |            | \$ 19,861   |           | \$ 86,468            |
| Labor Premium Time                                                 | 16.70%   |      |            |             |            | 3,317       |           | 3,317                |
| SUBTOTAL:                                                          |          |      | _          | \$ 66,607   |            | \$ 23,178   |           | \$ 89,785            |

HMS Project No.: 22045

| OPTION 4 - PILE FOUNDATION/DESIGN                          |          |      | MATERI  | AL        | LABOR   | 2         | TOTAL     | TOTAL          |
|------------------------------------------------------------|----------|------|---------|-----------|---------|-----------|-----------|----------------|
| B STRUCTURE                                                | QUANTITY | UNIT | RATE    | TOTAL     | RATE    | TOTAL     | UNIT RATE | MATERIAL/LABOR |
|                                                            |          |      | \$      | \$        | \$      | \$        | \$        | \$             |
| Subcontractor's Overhead and Profit on Material and Labor  | 20.00%   |      |         | 13,321    |         | 4,636     |           | 17,957         |
| SUBTOTAL SUBSTRUCTURE:                                     |          |      | -       | \$ 79,928 |         | \$ 27,814 |           | \$ 107,742     |
| SUPERSTRUCTURE                                             |          |      |         |           |         |           |           |                |
| Tower Construction                                         |          |      |         |           |         |           |           |                |
| W-beams                                                    | 91,000   | LBS  | 2.75    | 250,250   | 1.25    | 113,750   | 4.00      | 364,000        |
| Miscellaneous angles, bolts, and connections (15% assumed) | 13,650   | LBS  | 2.65    | 36,173    | 2.20    | 30,030    | 4.85      | 66,203         |
| Crane and operator                                         | 2        | WK   | 5500.00 | 11,000    | 3600.00 | 7,200     | 9100.00   | 18,200         |
| Floor Construction                                         |          |      |         |           |         |           |           |                |
| 14" BCI 90 joists                                          | 1,444    | LF   | 4.75    | 6,859     | 1.60    | 2,310     | 6.35      | 9,169          |
| Joist blockings                                            | 75       | LF   | 2.40    | 180       | 1.90    | 143       | 4.30      | 323            |
| R-21 batt insulation                                       | 900      | SF   | 0.85    | 765       | 0.45    | 405       | 1.30      | 1,170          |
| 2"x6" tongue and groove decking                            | 1,444    | SF   | 8.50    | 12,274    | 3.65    | 5,271     | 12.15     | 17,545         |
| 5/8" plywood soffit sheathing                              | 900      | SF   | 1.95    | 1,755     | 1.25    | 1,125     | 3.20      | 2,880          |
| Miscellaneous joist hangers, connection hardware, etc.     | 1        | LOT  | 450.00  | 450       | 700.00  | 700       | 1150.00   | 1,150          |

HMS Project No.: 22045

| OPTION 4 - PILE FOUNDATION/DESIGN              |          |      | MATERI | 4 <i>L</i> | LABOR   | 2      | TOTAL     | TOTAL                |
|------------------------------------------------|----------|------|--------|------------|---------|--------|-----------|----------------------|
| B STRUCTURE                                    | QUANTITY | UNIT | RATE   | TOTAL      | RATE    | TOTAL  | UNIT RATE | MATERIAL/LABOR<br>\$ |
|                                                |          |      | ψ      | Ψ          | ψ       | Ψ      | Ψ         | Ψ                    |
| SUPERSTRUCTURE (Continued)                     |          |      |        |            |         |        |           |                      |
| Roof Construction                              |          |      |        |            |         |        |           |                      |
| Glulam beam roof framing                       | 900      | SF   | 45.25  | 40,725     | 30.25   | 27,225 | 75.50     | 67,950               |
| 5/8" roof sheathing                            | 900      | SF   | 1.95   | 1,755      | 0.95    | 855    | 2.90      | 2,610                |
| Brackets, bolts, connection hardware, etc.     | 1        | LOT  | 800.00 | 800        | 1120.00 | 1,120  | 1920.00   | 1,920                |
| Stair Construction                             |          |      |        |            |         |        |           |                      |
| 42" wide grate stair treads                    | 108      | EA   | 250.00 | 27,000     | 70.00   | 7,560  | 320.00    | 34,560               |
| Galvanized metal concrete filled landing       | 96       | SF   | 50.40  | 4,838      | 20.00   | 1,920  | 70.40     | 6,758                |
| 42" high painted steel pipe railings and posts | 266      | LF   | 99.00  | 26,334     | 28.00   | 7,448  | 127.00    | 33,782               |
| EXTERIOR CLOSURE                               |          |      |        |            |         |        |           |                      |
| Exterior Walls                                 |          |      |        |            |         |        |           |                      |
| 2"x6" wood studs, 16" o/c, including plates    | 2,280    | LF   | 2.65   | 6,042      | 1.50    | 3,420  | 4.15      | 9,462                |
| 1/2" plywood sheathing                         | 1,920    | SF   | 1.70   | 3,264      | 1.30    | 2,496  | 3.00      | 5,760                |
| T1-11 siding, painted                          | 1,920    | SF   | 3.63   | 6,970      | 2.46    | 4,723  | 6.09      | 11,693               |
| Vapor retarder                                 | 1,920    | SF   | 0.12   | 230        | 0.15    | 288    | 0.27      | 518                  |

| OPTION 4 - PILE FOUNDATION/DESIGN                                                              |          |      | MATERIAL   |             | LABOF      | 7           | TOTAL           | TOTAL                |
|------------------------------------------------------------------------------------------------|----------|------|------------|-------------|------------|-------------|-----------------|----------------------|
| B STRUCTURE                                                                                    | QUANTITY | UNIT | RATE<br>\$ | TOTAL<br>\$ | RATE<br>\$ | TOTAL<br>\$ | UNIT RATE<br>\$ | MATERIAL/LABOR<br>\$ |
| EXTERIOR CLOSURE (Continued)                                                                   |          |      |            |             |            |             | 1               |                      |
| Exterior Walls (Continued)                                                                     |          |      |            |             |            |             |                 |                      |
| Air barrier                                                                                    | 1,920    | SF   | 0.85       | 1,632       | 0.65       | 1,248       | 1.50            | 2,880                |
| 6" batt insulation                                                                             | 1,920    | SF   | 0.85       | 1,632       | 0.60       | 1,152       | 1.45            | 2,784                |
| 5/8" gypboard, inside (tape/texture excluded)                                                  | 1,920    | SF   | 0.66       | 1,267       | 1.55       | 2,976       | 2.21            | 4,243                |
| Exterior Openings                                                                              |          |      |            |             |            |             |                 |                      |
| 3'0"x6'8" pre-hung insulated fiberglass door, complete                                         | 1        | EA   | 1300.00    | 1,300       | 250.00     | 250         | 1550.00         | 1,550                |
| Vinyl windows (4)                                                                              | 240      | SF   | 60.00      | 14,400      | 10.50      | 2,520       | 70.50           | 16,920               |
| ROOFING SYSTEMS                                                                                |          |      |            |             |            |             |                 |                      |
| Corrugated metal panel roofing system, including insulation and flashings (excludes skylights) | 900      | SF   | 6.80       | 6,120       | 4.35       | 3,915       | 11.15           | 10,035               |
| MISCELLANEOUS                                                                                  |          |      |            |             |            |             |                 |                      |
| Equipment and fuel allowance                                                                   | 2        | MOS  | 112000.00  | 224,000     |            |             | 112000.00       | 224,000              |
| SUBTOTAL:                                                                                      |          |      | -          | \$ 688,015  |            | \$ 230,050  |                 | \$ 918,065           |

HMS Project No.: 22045

| OPTION 4 - PILE FOUNDATION/DESIGN          |                | MATE | RIAL       | LAB  | OR         | TOTAL     | TOTAL          |
|--------------------------------------------|----------------|------|------------|------|------------|-----------|----------------|
| B STRUCTURE                                | QUANTITY UNIT  | RATE | TOTAL      | RATE | TOTAL      | UNIT RATE | MATERIAL/LABOR |
|                                            |                | \$   | \$         | \$   | \$         | \$        | \$             |
| Labor Premium Time                         | 16.70%         |      |            |      | 38,418     |           | 38,418         |
| SUBTOTAL SUPERSTRUCTURE/EXTERIOR CL        | OSURE/ROOFING: |      | \$ 688,015 |      | \$ 268,468 |           | \$ 956,483     |
| SUBTOTAL OPTION 4:                         |                |      |            |      |            |           | \$ 1,064,225   |
| General Requirements, Overhead, and Profit | 37.00%         |      |            |      |            |           | 393,763        |
| Unique Market Risk                         | 5.00%          |      |            |      |            |           | 72,899         |
| Estimator's Contingency                    | 30.00%         |      |            |      |            |           | 459,266        |
| Escalation                                 | 3.50%          |      |            |      |            |           | 69,655         |

\$ 2,059,808

HMS Project No.: 22045

| OPTION 5 - SHALLOW FOUNDATION/                         |          |      | MATERI | AL     | LABOF  | ?     | TOTAL     | TOTAL          |
|--------------------------------------------------------|----------|------|--------|--------|--------|-------|-----------|----------------|
| DESIGN C STRUCTURE                                     | QUANTITY | UNIT | RATE   | TOTAL  | RATE   | TOTAL | UNIT RATE | MATERIAL/LABOR |
|                                                        |          |      | \$     | \$     | \$     | \$    | \$        | \$             |
| SUBSTRUCTURE                                           |          |      |        |        |        |       |           |                |
| Note: Excludes site pad preparation.                   |          |      |        |        |        |       |           |                |
| Excavate, backfill and dispose for footings/foundation | 201      | CY   | 2.50   | 503    | 13.50  | 2,714 | 16.00     | 3,217          |
| Concrete spread footings (4)                           | 42       | CY   | 175.00 | 7,350  | 100.00 | 4,200 | 275.00    | 11,550         |
| Concrete pilasters (4)                                 | 6        | CY   | 175.00 | 1,050  | 95.00  | 570   | 270.00    | 1,620          |
| Concrete tie beams                                     | 27       | CY   | 175.00 | 4,725  | 120.00 | 3,240 | 295.00    | 7,965          |
| Concrete waste (5%)                                    | 4        | CY   | 175.00 | 700    | 100.00 | 400   | 275.00    | 1,100          |
| Pump concrete                                          | 79       | CY   | 50.00  | 3,950  |        |       | 50.00     | 3,950          |
| Bar reinforcement                                      | 6,000    | LBS  | 1.15   | 6,900  | 0.80   | 4,800 | 1.95      | 11,700         |
| Form footings, tie beams, and bases                    | 1,176    | SF   | 4.00   | 4,704  | 5.20   | 6,115 | 9.20      | 10,819         |
| SUPERSTRUCTURE                                         |          |      |        |        |        |       |           |                |
| Tower Construction                                     |          |      |        |        |        |       |           |                |
| Concrete walls                                         | 72       | CY   | 175.00 | 12,600 | 100.00 | 7,200 | 275.00    | 19,800         |
| Concrete waste (5%)                                    | 4        | CY   | 175.00 | 700    | 100.00 | 400   | 275.00    | 1,100          |
| Pump concrete                                          | 76       | CY   | 50.00  | 3,800  |        |       | 50.00     | 3,800          |

HMS Project No.: 22045

| OPTION 5 - SHALLOW FOUNDATION/               |          |      | MATERI  | AL     | LABOF   | 2      | TOTAL     | TOTAL          |
|----------------------------------------------|----------|------|---------|--------|---------|--------|-----------|----------------|
| DESIGN C STRUCTURE                           | QUANTITY | UNIT | RATE    | TOTAL  | RATE    | TOTAL  | UNIT RATE | MATERIAL/LABOR |
|                                              |          |      | \$      | \$     | \$      | \$     | \$        | \$             |
| SUPERSTRUCTURE (Continued)                   |          |      |         |        |         |        |           |                |
| Tower Construction (Continued)               |          |      |         |        |         |        |           |                |
| Bar reinforcement                            | 8,640    | LBS  | 1.15    | 9,936  | 0.80    | 6,912  | 1.95      | 16,848         |
| Form walls                                   | 1,176    | SF   | 7.20    | 8,467  | 8.30    | 9,761  | 15.50     | 18,228         |
| Allowance for door frame forming             | 1        | LOT  | 90.00   | 90     | 700.00  | 700    | 790.00    | 790            |
| 2"x12" pressure treated plate                | 120      | LF   | 4.30    | 516    | 1.60    | 192    | 5.90      | 708            |
| 2"x10" wood studs, 16" o/c, including plates | 6,480    | LF   | 3.15    | 20,412 | 1.55    | 10,044 | 4.70      | 30,456         |
| 1/2" plywood sheathing at walls              | 11,520   | SF   | 1.70    | 19,584 | 1.30    | 14,976 | 3.00      | 34,560         |
| 1/2" plywood sheathing at diaphragm (3 each) | 2,700    | SF   | 1.70    | 4,590  | 1.30    | 3,510  | 3.00      | 8,100          |
| 24" Pre-engineered wood floor trusses        | 1,350    | LF   | 15.00   | 20,250 | 5.00    | 6,750  | 20.00     | 27,000         |
| Miscellaneous connection hardware            | 3        | LOT  | 450.00  | 1,350  | 700.00  | 2,100  | 1150.00   | 3,450          |
| Crane and operator                           | 2        | WΚ   | 5500.00 | 11,000 | 3600.00 | 7,200  | 9100.00   | 18,200         |
| Floor Construction (Living Quarters)         |          |      |         |        |         |        |           |                |
| 14" BCI 90 joists                            | 1,444    | LF   | 4.75    | 6,859  | 1.60    | 2,310  | 6.35      | 9,169          |
| Joist blockings                              | 75       | LF   | 2.40    | 180    | 1.90    | 143    | 4.30      | 323            |
| R-21 batt insulation                         | 900      | SF   | 0.85    | 765    | 0.45    | 405    | 1.30      | 1,170          |

HMS Project No.: 22045

| OPTION 5 - SHALLOW FOUNDATION/                         |          |      | MATERI | 4L     | LABOF   | 2      | TOTAL     | TOTAL          |
|--------------------------------------------------------|----------|------|--------|--------|---------|--------|-----------|----------------|
| DESIGN C STRUCTURE                                     | QUANTITY | UNIT | RATE   | TOTAL  | RATE    | TOTAL  | UNIT RATE | MATERIAL/LABOR |
|                                                        |          |      | \$     | \$     | \$      | \$     | \$        | \$             |
| SUPERSTRUCTURE (Continued)                             |          |      |        |        |         |        |           |                |
| Floor Construction (Living Quarters) (Continued)       |          |      |        |        |         |        |           |                |
| 2"x6" tongue and groove decking                        | 1,444    | SF   | 8.50   | 12,274 | 3.65    | 5,271  | 12.15     | 17,545         |
| Miscellaneous joist hangers, connection hardware, etc. | 1        | LOT  | 450.00 | 450    | 700.00  | 700    | 1150.00   | 1,150          |
| Roof Construction (Living Quarters)                    |          |      |        |        |         |        |           |                |
| Glulam beam roof framing                               | 900      | SF   | 45.25  | 40,725 | 30.25   | 27,225 | 75.50     | 67,950         |
| 5/8" roof sheathing                                    | 900      | SF   | 1.95   | 1,755  | 0.95    | 855    | 2.90      | 2,610          |
| Brackets, bolts, connection hardware, etc.             | 1        | LOT  | 800.00 | 800    | 1120.00 | 1,120  | 1920.00   | 1,920          |
| Staircase Construction (Wood)                          |          |      |        |        |         |        |           |                |
| Wooden stairs and landings                             | 456      | SF   | 152.24 | 69,421 | 20.90   | 9,530  | 173.14    | 78,951         |
| Handrail and brackets                                  | 63       | LF   | 28.00  | 1,764  | 12.75   | 803    | 40.75     | 2,567          |
| EXTERIOR CLOSURE                                       |          |      |        |        |         |        |           |                |
| Exterior Walls                                         |          |      |        |        |         |        |           |                |
| 2"x6" wood studs, 16" o/c, including plates            | 2,280    | LF   | 2.65   | 6,042  | 1.50    | 3,420  | 4.15      | 9,462          |
| 1/2" plywood sheathing                                 | 1,920    | SF   | 1.70   | 3,264  | 1.30    | 2,496  | 3.00      | 5,760          |

HMS Project No.: 22045

| OPTION 5 - SHALLOW FOUNDATION/                         |          |      | MATERI     | MATERIAL    |            | 2           | TOTAL           | TOTAL                |
|--------------------------------------------------------|----------|------|------------|-------------|------------|-------------|-----------------|----------------------|
| DESIGN C STRUCTURE                                     | QUANTITY | UNIT | RATE<br>\$ | TOTAL<br>\$ | RATE<br>\$ | TOTAL<br>\$ | UNIT RATE<br>\$ | MATERIAL/LABOR<br>\$ |
|                                                        |          |      | -          | -           | -          | -           | Ŧ               | -                    |
| EXTERIOR CLOSURE (Continued)                           |          |      |            |             |            |             |                 |                      |
| Exterior Walls (Continued)                             |          |      |            |             |            |             |                 |                      |
| T1-11 siding, painted                                  | 1,920    | SF   | 3.63       | 6,970       | 2.46       | 4,723       | 6.09            | 11,693               |
| Vapor retarder                                         | 1,920    | SF   | 0.12       | 230         | 0.15       | 288         | 0.27            | 518                  |
| Air barrier                                            | 1,920    | SF   | 0.85       | 1,632       | 0.65       | 1,248       | 1.50            | 2,880                |
| 6" batt insulation                                     | 1,920    | SF   | 0.85       | 1,632       | 0.60       | 1,152       | 1.45            | 2,784                |
| 5/8" gypboard, inside (tape/texture excluded)          | 1,920    | SF   | 0.66       | 1,267       | 1.55       | 2,976       | 2.21            | 4,243                |
| Exterior Openings                                      |          |      |            |             |            |             |                 |                      |
| 3'0"x6'8" pre-hung insulated fiberglass door, complete | 1        | EA   | 1300.00    | 1,300       | 250.00     | 250         | 1550.00         | 1,550                |
| Vinyl windows (4)                                      | 240      | SF   | 60.00      | 14,400      | 10.50      | 2,520       | 70.50           | 16,920               |
| Exterior Openings in Tower Structure                   |          |      |            |             |            |             |                 |                      |
| 3'0"x6'8" pre-hung insulated fiberglass door, complete | 1        | EA   | 1300.00    | 1,300       | 250.00     | 250         | 1550.00         | 1,550                |
| Vinyl windows (4)                                      | 240      | SF   | 60.00      | 14,400      | 10.50      | 2,520       | 70.50           | 16,920               |

| OPTION 5 - SHALLOW FOUNDATION/                                                                 |          |      | MATERI    | AL         | LABOI | 7          | TOTAL     | TOTAL          |
|------------------------------------------------------------------------------------------------|----------|------|-----------|------------|-------|------------|-----------|----------------|
| DESIGN C STRUCTURE                                                                             | QUANTITY | UNIT | RATE      | TOTAL      | RATE  | TOTAL      | UNIT RATE | MATERIAL/LABOR |
|                                                                                                |          |      | \$        | \$         | \$    | \$         | \$        | \$             |
| ROOFING SYSTEMS                                                                                |          |      |           |            |       |            |           |                |
| Corrugated metal panel roofing system, including insulation and flashings (excludes skylights) | 900      | SF   | 6.80      | 6,120      | 4.35  | 3,915      | 11.15     | 10,035         |
| MISCELLANEOUS                                                                                  |          |      |           |            |       |            |           |                |
| Equipment and fuel allowance                                                                   | 2        | MOS  | 112000.00 | 224,000    |       |            | 112000.00 | 224,000        |
| SUBTOTAL:                                                                                      |          |      | -         | \$ 560,727 |       | \$ 165,904 |           | \$ 726,631     |
| Labor Premium Time                                                                             | 16.70%   |      |           |            |       | 27,706     |           | 27,706         |
| SUBTOTAL:                                                                                      |          |      |           |            |       |            |           | \$ 754,337     |
| General Requirements, Overhead, and Profit                                                     | 37.00%   |      |           |            |       |            |           | 279,105        |
| Unique Market Risk                                                                             | 5.00%    |      |           |            |       |            |           | 51,672         |
| Estimator's Contingency                                                                        | 30.00%   |      |           |            |       |            |           | 325,534        |
| Escalation                                                                                     | 3.50%    |      |           |            |       |            |           | 49,373         |

| TOTAL ESTIMATED COST: | \$ 1,460,021 |
|-----------------------|--------------|
|                       |              |

| OPTION 6 - PILE FOUNDATION/DESIGN                                  |          |      | MATERIA | ۹ <i>L</i> | LABOR   | 2         | TOTAL     | TOTAL          |
|--------------------------------------------------------------------|----------|------|---------|------------|---------|-----------|-----------|----------------|
| C STRUCTURE                                                        | QUANTITY | UNIT | RATE    | TOTAL      | RATE    | TOTAL     | UNIT RATE | MATERIAL/LABOR |
|                                                                    |          |      | \$      | \$         | \$      | \$        | \$        | \$             |
| SUBSTRUCTURE                                                       |          |      |         |            |         |           |           |                |
| Note: By subcontractor. Excludes site pad prepar                   | ation.   |      |         |            |         |           |           |                |
| Excavate, backfill and dispose for tie beams                       | 47       | CY   | 2.50    | 118        | 13.50   | 635       | 16.00     | 753            |
| 16" diameter, 83 lbs./LF steel pile (assumes good soil conditions) | 200      | VLF  | 257.30  | 51,460     | 37.14   | 7,428     | 294.44    | 58,888         |
| Pile points, 16" diameter, welded to pile                          | 4        | EA   | 380.00  | 1,520      | 215.00  | 860       | 595.00    | 2,380          |
| Pile rig mobilization/demobilization costs                         | 1        | LOT  | 2500.00 | 2,500      | 4000.00 | 4,000     | 6500.00   | 6,500          |
| Concrete tie beam                                                  | 27       | CY   | 175.00  | 4,725      | 90.00   | 2,430     | 265.00    | 7,155          |
| Concrete waste (5%)                                                | 2        | CY   | 175.00  | 350        | 90.00   | 180       | 265.00    | 530            |
| Pump concrete                                                      | 29       | CY   | 50.00   | 1,450      |         |           | 50.00     | 1,450          |
| Bar reinforcement                                                  | 2,160    | LBS  | 1.15    | 2,484      | 0.80    | 1,728     | 1.95      | 4,212          |
| Form tie beams                                                     | 500      | SF   | 4.00    | 2,000      | 5.20    | 2,600     | 9.20      | 4,600          |
| SUBTOTAL:                                                          |          |      | _       | \$ 66,607  |         | \$ 19,861 |           | \$ 86,468      |
| Labor Premium Time                                                 | 16.70%   |      |         |            |         | 3,317     |           | 3,317          |
| SUBTOTAL:                                                          |          |      | -       | \$ 66,607  |         | \$ 23,178 |           | \$ 89,785      |

HMS Project No.: 22045

| OPTION 6 - PILE FOUNDATION/DESIGN                         |          |      | MATERI | AI        | LABOR  | 2         | ΤΟΤΑΙ     | ΤΟΤΑΙ          |
|-----------------------------------------------------------|----------|------|--------|-----------|--------|-----------|-----------|----------------|
| C STRUCTURE                                               | QUANTITY | UNIT | RATE   | TOTAL     | RATE   | TOTAL     | UNIT RATE | MATERIAL/LABOR |
|                                                           |          |      | \$     | \$        | \$     | \$        | \$        | \$             |
| Subcontractor's Overhead and Profit on Material and Labor | 20.00%   |      |        | 13,321    |        | 4,636     |           | 17,957         |
| SUBTOTAL SUBSTRUCTURE:                                    |          |      | -      | \$ 79,928 |        | \$ 27,814 |           | \$ 107,742     |
| SUPERSTRUCTURE                                            |          |      |        |           |        |           |           |                |
| Tower Construction                                        |          |      |        |           |        |           |           |                |
| Concrete walls                                            | 72       | CY   | 175.00 | 12,600    | 100.00 | 7,200     | 275.00    | 19,800         |
| Concrete waste (5%)                                       | 4        | CY   | 175.00 | 700       | 100.00 | 400       | 275.00    | 1,100          |
| Pump concrete                                             | 76       | CY   | 50.00  | 3,800     |        |           | 50.00     | 3,800          |
| Bar reinforcement                                         | 8,640    | LBS  | 1.15   | 9,936     | 0.80   | 6,912     | 1.95      | 16,848         |
| Form walls                                                | 1,176    | SF   | 7.20   | 8,467     | 8.30   | 9,761     | 15.50     | 18,228         |
| Allowance for door frame forming                          | 1        | LOT  | 90.00  | 90        | 700.00 | 700       | 790.00    | 790            |
| 2"x12" pressure treated plate                             | 120      | LF   | 4.30   | 516       | 1.60   | 192       | 5.90      | 708            |
| 2"x10" wood studs, 16" o/c, including plates              | 6,480    | LF   | 3.15   | 20,412    | 1.55   | 10,044    | 4.70      | 30,456         |
| 1/2" plywood sheathing at walls                           | 11,520   | SF   | 1.70   | 19,584    | 1.30   | 14,976    | 3.00      | 34,560         |
| 1/2" plywood sheathing at diaphragm (3 each)              | 2,700    | SF   | 1.70   | 4,590     | 1.30   | 3,510     | 3.00      | 8,100          |
| 24" Pre-engineered wood floor trusses                     | 1,350    | LF   | 15.00  | 20,250    | 5.00   | 6,750     | 20.00     | 27,000         |

HMS Project No.: 22045

| OPTION 6 - PILE FOUNDATION/DESIGN                      | QUANTITY | UNIT | MATERIAL |        | LABOR   |        | TOTAL     | TOTAL          |
|--------------------------------------------------------|----------|------|----------|--------|---------|--------|-----------|----------------|
| C STRUCTURE                                            |          |      | RATE     | TOTAL  | RATE    | TOTAL  | UNIT RATE | MATERIAL/LABOR |
|                                                        |          |      | \$       | \$     | \$      | \$     | \$        | \$             |
| SUPERSTRUCTURE (Continued)                             |          |      |          |        |         |        |           |                |
| Tower Construction (Continued)                         |          |      |          |        |         |        |           |                |
| Miscellaneous connection hardware                      | 3        | LOT  | 450.00   | 1,350  | 700.00  | 2,100  | 1150.00   | 3,450          |
| Crane and operator                                     | 2        | WΚ   | 5500.00  | 11,000 | 3600.00 | 7,200  | 9100.00   | 18,200         |
| Floor Construction (Living Quarters)                   |          |      |          |        |         |        |           |                |
| 14" BCI 90 joists                                      | 1,444    | LF   | 4.75     | 6,859  | 1.60    | 2,310  | 6.35      | 9,169          |
| Joist blockings                                        | 75       | LF   | 2.40     | 180    | 1.90    | 143    | 4.30      | 323            |
| R-21 batt insulation                                   | 900      | SF   | 0.85     | 765    | 0.45    | 405    | 1.30      | 1,170          |
| 2"x6" tongue and groove decking                        | 1,444    | SF   | 8.50     | 12,274 | 3.65    | 5,271  | 12.15     | 17,545         |
| Miscellaneous joist hangers, connection hardware, etc. | 1        | LOT  | 450.00   | 450    | 700.00  | 700    | 1150.00   | 1,150          |
| Roof Construction (Living Quarters)                    |          |      |          |        |         |        |           |                |
| Glulam beam roof framing                               | 900      | SF   | 45.25    | 40,725 | 30.25   | 27,225 | 75.50     | 67,950         |
| 5/8" roof sheathing                                    | 900      | SF   | 1.95     | 1,755  | 0.95    | 855    | 2.90      | 2,610          |
| Brackets, bolts, connection hardware, etc.             | 1        | LOT  | 800.00   | 800    | 1120.00 | 1,120  | 1920.00   | 1,920          |

HMS Project No.: 22045

| OPTION 6 - PILE FOUNDATION/DESIGN<br>C STRUCTURE       | QUANTITY | UNIT | MATERI  | AL     | LABOF  | 2     | TOTAL<br>UNIT RATE | TOTAL<br>MATERIAL/LABOR |
|--------------------------------------------------------|----------|------|---------|--------|--------|-------|--------------------|-------------------------|
|                                                        |          |      | RATE    | TOTAL  | RATE   | TOTAL |                    |                         |
|                                                        |          |      | \$      | \$     | \$     | \$    | \$                 | \$                      |
| SUPERSTRUCTURE (Continued)                             |          |      |         |        |        |       |                    |                         |
| Staircase Construction (Wood)                          |          |      |         |        |        |       |                    |                         |
| Wooden stairs and landings                             | 456      | SF   | 152.24  | 69,421 | 20.90  | 9,530 | 173.14             | 78,951                  |
| Handrail and brackets                                  | 63       | LF   | 28.00   | 1,764  | 12.75  | 803   | 40.75              | 2,567                   |
| EXTERIOR CLOSURE                                       |          |      |         |        |        |       |                    |                         |
| Exterior Walls                                         |          |      |         |        |        |       |                    |                         |
| 2"x6" wood studs, 16" o/c, including plates            | 2,280    | LF   | 2.65    | 6,042  | 1.50   | 3,420 | 4.15               | 9,462                   |
| 1/2" plywood sheathing                                 | 1,920    | SF   | 1.70    | 3,264  | 1.30   | 2,496 | 3.00               | 5,760                   |
| T1-11 siding, painted                                  | 1,920    | SF   | 3.63    | 6,970  | 2.46   | 4,723 | 6.09               | 11,693                  |
| Vapor retarder                                         | 1,920    | SF   | 0.12    | 230    | 0.15   | 288   | 0.27               | 518                     |
| Air barrier                                            | 1,920    | SF   | 0.85    | 1,632  | 0.65   | 1,248 | 1.50               | 2,880                   |
| 6" batt insulation                                     | 1,920    | SF   | 0.85    | 1,632  | 0.60   | 1,152 | 1.45               | 2,784                   |
| 5/8" gypboard, inside (tape/texture excluded)          | 1,920    | SF   | 0.66    | 1,267  | 1.55   | 2,976 | 2.21               | 4,243                   |
| Exterior Openings                                      |          |      |         |        |        |       |                    |                         |
| 3'0"x6'8" pre-hung insulated fiberglass door, complete | 1        | EA   | 1300.00 | 1,300  | 250.00 | 250   | 1550.00            | 1,550                   |

HMS Project No.: 22045

| OPTION 6 - PILE FOUNDATION/DESIGN                                                              | QUANTITY | UNIT   | MATERIAL  |            | LABOR  | 2          | TOTAL           | TOTAL                |
|------------------------------------------------------------------------------------------------|----------|--------|-----------|------------|--------|------------|-----------------|----------------------|
| C STRUCTURE                                                                                    |          |        | RATE      | TOTAL      | RATE   | TOTAL      | UNIT RATE<br>\$ | MATERIAL/LABOR<br>\$ |
|                                                                                                |          |        | \$        | \$         | \$     | \$         |                 |                      |
| EXTERIOR CLOSURE (Continued)                                                                   |          |        |           |            |        |            |                 |                      |
| Exterior Openings (Continued)                                                                  |          |        |           |            |        |            |                 |                      |
| Vinyl windows (4)                                                                              | 240      | SF     | 60.00     | 14,400     | 10.50  | 2,520      | 70.50           | 16,920               |
| Exterior Openings in Tower Structure                                                           |          |        |           |            |        |            |                 |                      |
| 3'0"x6'8" pre-hung insulated fiberglass door, complete                                         | 1        | EA     | 1300.00   | 1,300      | 250.00 | 250        | 1550.00         | 1,550                |
| Vinyl windows (4)                                                                              | 240      | SF     | 60.00     | 14,400     | 10.50  | 2,520      | 70.50           | 16,920               |
| ROOFING SYSTEMS                                                                                |          |        |           |            |        |            |                 |                      |
| Corrugated metal panel roofing system, including insulation and flashings (excludes skylights) | 900      | SF     | 6.80      | 6,120      | 4.35   | 3,915      | 11.15           | 10,035               |
| MISCELLANEOUS                                                                                  |          |        |           |            |        |            |                 |                      |
| Equipment and fuel allowance                                                                   | 2        | MOS    | 112000.00 | 224,000    |        |            | 112000.00       | 224,000              |
| SUBTOTAL:                                                                                      |          |        | -         | \$ 530,845 |        | \$ 143,865 |                 | \$ 674,710           |
| Labor Premium Time                                                                             | 16.70%   |        |           |            |        | 24,025     |                 | 24,025               |
| SUBTOTAL SUPERSTRUCTURE/EXTERIOR CL                                                            | OSURE/RO | OFING: | -         | \$ 530,845 |        | \$ 167,890 |                 | \$ 698,735           |
| SUBTOTAL OPTION 6:                                                                             |          |        |           |            |        |            |                 | \$ 806,477           |

HMS Project No.: 22045

| <b>OPTION 6 - PILE FOUNDATION/DESIGN</b>   | QUANTITY | UNIT | MATERIAL   |             | LABOR      |             | TOTAL           | TOTAL                |
|--------------------------------------------|----------|------|------------|-------------|------------|-------------|-----------------|----------------------|
| C STRUCTURE                                |          |      | RATE<br>\$ | TOTAL<br>\$ | RATE<br>\$ | TOTAL<br>\$ | UNIT RATE<br>\$ | MATERIAL/LABOR<br>\$ |
| General Requirements, Overhead, and Profit | 37.00%   |      |            |             |            |             |                 | 298,396              |
| Unique Market Risk                         | 5.00%    |      |            |             |            |             |                 | 55,244               |
| Estimator's Contingency                    | 30.00%   |      |            |             |            |             |                 | 348,035              |
| Escalation                                 | 3.50%    |      |            |             |            |             |                 | 52,785               |