Table of Contents

Project Goals

- Objectives
 - Model and rearrange furniture
 - Arrange furniture with genetic algorithm
- Challenges
 - Representing furniture in a 3D format
 - Generating pleasing designs given a set of guidelines
 - Utilizing feedback to improve usability and performance

Define

Arrange

Generate

Save

Rearrange

Before

After

Genetic Algorithm

How Refixture works

Generate Populations

Evolve better designs from a population of random rooms

How does selection work?

- Runs a tournament-based selection to determine survivors
 - Survivors copy their genetics to the next generation
 - Fitness-proportionate selection was also tested
- Survivor pairs can crossover to produce offspring
 - The offspring's furniture positions are chosen randomly from each parent
- Novelty Search
 - Diverse solutions are promoted through archiving unique solutions
 - Keeping an archive steers the algorithm away from stagnation

Search Space Using Novelty Search

New outlier added to archive Distance between unique solutions Room in Novelty Archive Candidate Rooms

Fixture Representation

- Could be static or movable
- Individual fitness
- Fixture type multiple types
 - Bed, wall, seat?
- Properties inherited by type
 - Observes gravity
 - Must attach to ground/wall
 - Emits light
 - Interacts with other types
- Position, rotation, dimensions, and scale

Fitness is based on design principles

- No obstructions
- Maximizes open area
- Restrictions based on furniture types
- Interactions between furniture
- Natural positions

New Designs appear through mutation

- Random push
- New random position/rotation
- Align with nearest fixture/wall
- Snap to nearest fixture/wall
- Face towards another furniture

Program Flowchart

Algorithm Screen

Reset

Start / Pause

Stop and Continue

vlove Camera

Save Room... View Prev View Next Return to Menu

Refixture Survey

Refixture Questions

Strongly disagree

Please rate these statements based on how strongly you agree/disagree. The middle option (4) indicates feeling neutral or non-opinionated. All responses are optional.

I was able to create a custom room both by adding various fixtures of different sizes, and by removing them as required.

1 2 3 4 5 6 7

Strongly disagree O O O O O Strongly agre

The loading and saving functionality operated as expected. (If they we please make a note of what happened further below this question.)

1 2 3 4 5 6 7

Testing Plan

 Feedback received through survey

Feedback Summary

- Usability concerns
 - Users needed understanding of controls to perform tasks
 - Difficult to model variety with limited assets
- Algorithm process was unclear
 - Some prior knowledge is helpful (learning process)
- Algorithm unrefined
 - Solutions could be messy or unnatural, but did help spark creativity

Planned Features

- Address usability concerns
 - Redesigned UI and flow
 - Modify furniture's materials/color
 - Design or import custom fixtures
- Improve algorithm features
 - Improved evaluation methodology (graphical analysis)
 - Furniture grouping / interactions
 - New generation / evolution strategies
 - Pathfinding agents to improve walkability

Distribution

- Built in Unity for browser and Windows
 - Hosted on GitHub
- Assets used are royalty-free or non-commercial
- Source code and simple documentation
 - Some assets not included in source
- Website for more comprehensive presentation

Releases, documentation, road map, and more...

https://jpc22.github.io/