UNIVERSITY OF ALASKA ANCHORAGE

CSCE A470

CAPSTONE PROJECT

Remote Sensing in the Arctic

Author:

Mike Mobley
Supervisor:

Prof. Martin Cenek, PhD

Anchorage AK, April 2016

LJAA Computer Science &
Engineering Department
UNIVERSITY of ALASKA ANCHORAGE

© Copyright 2016

by
Mike Mobley

mmobley4@alaska.edu

Version5.3

Abstract

The purpose of this document is to describe, explain, and present the capstone phtjeetNbdgbley,
Matthew Devinsand Lance LebeiThe capstone project is titl&kmote Sensing in the Arcti€he

purpose of this project is toreate a communications network capable of relaying sensor data back to a
home base station for analyzatiorhis project is funded by the Department of Homeland Security as
part of the Arctic Domain Awareness Center of Excekenc

Motivation: With climate change having substantial effects in the arctic region, increased accessibility
will impact how these areas are used. Commerce, research, and access to natural resources will result
in a noteworthy increase of human traffithe ability to monitor the impact of this activity is vital to

help determine the environmental impact of the increased use.

Problem Statement: The arcti c regionds vast size coupl ed
monitor requires a low cosption to detect conditional changes or events and isolate their locations
within a reasonable area.

Overview:

This project consists of two major parts, the communication network and the simulator. The
communication network is designed to be-bellingand operate in a hostile environment. Each node

will be attached to a sensor type based on the application the network is intended for. We will test our
net work with audio sensors. I f the noded@s sens
uniquely identify the event in a data structure and transmit the event to one of four readout
nodes/stations for storage or analysis.

This project was developed in short iterations utilizing the agile methodology. as new features were
introduced, theyvould get coded and tested then implemented. Because testing the network in a
deployed environment was not feasible, we decided to test many of the features with agent based
modeling software.

The software for the nodes was developed in a specializedhHle for our chosen hardware devices.
The language utilizes a derivation of C, C++, and some functionality is provided by third party
libraries. The simulator software was developed using NetLogo IDE and software. This platform
enabled the developmeuita potential triangulation method that does not require any synchronized
communication.

Approach: We used a lovcost off the shelf programmable sensor with RF capabilities to construct a
decentralized asynchronous network to detect a desired evemidbti@an. The sensors propagate the
information through the network to specially configured terminals to interpret the data. We also used
agent based model simulation software to predict behavior and isolate potential problems.

Result: We have been abkiccessfully configure the hardware and develop software that effectively
and efficiently detects and routes data through the network. The limitations of the sensors and the
asynchrony of the network has made location determination challenging. Werarglg researching
different possibilities that will allow us to isolate given events to a reasonable area within the network

topology.

Conclusion: Successful conclusion of this research will provide a low cost option for event
monitoring in the arcticegion. The versatility of the sensors will enable adaptation to cover a variety
of monitoring scenarios.

ACKNOWLEDGEMENTS

The completion of this capstone project was the result of the hard work and support of many different
people. lwould like acknowledge all of their help throughout the project.

First 1 would like to thank Dr. Martin CenelAs project supervisor, his leadership and mentorship was
vital to both my academic growth and ensured successful project progression. Heaahaed to
challenge the team while keeping expectations within scope of an undergraduate project. | have
learned a great deal throughout this process that will stay with me for years to come.

Next, | would like to thank all of my of my group membeévigtt Devins and Lance Lebéor all of
their hard work and determination to work together, meet frequently, and develop a high quality
research project.

As this project represents the culmination of my undergraduate studies here at UAA, | would like to
thankthe professors and staff for their excellent instruction and willingness to go the extra mile to
ensure my educational experience was both enjoyable and successful.

Additionall vy, |l would |ike to thank t hdeectbrepar tr
made this opportunity possible.

Finally, I would like to thank my dedicated family who supported me throughout this project as well as
my entire educational experience. Without their love and support, it would not have been possible.

Contents

Remote Sensing iN the ArCHC...........i i eeee e e eannnes 1

L@ =T o] =] SRR 8
g0 T0 (3T ox 1o o I PSR 8
00 [1 (0T [T [o OO PO PP PPPPPPPPPPRPRS 8

2 2N o] o] 1 ox= 11 o o P PUPUSUR 9

IR Y/ o 1Yo o SRS 10

1.4 ReCeNt DEVEIOPMENES..... .ot eeeee et eeee e e ettt e e annnnee 11

(@ =T o] (=] PSSR 13
System Integration and MOAEIING...........uuiiiiiiiiiiiieeei e 13
2.1 Technology Used for Implementation.................uuuuiicoieeiece e 13

2.2 Design View of System ArchiteCtUre..........ooooeeiiiiiiiieeee e 16

2.3 Components Used in Project DeVelIOPMENL.uuuiiiiiiiiieeeiiiiiiiieeeeeeee e 17

22 S o To 1o TN 1Y/ 11 oo (o] o o 1Y 20PN 19

(@ T o] (=] T PRSP 20
Design and Testing / USer INtEIACE.oovv oo 20
TN o (o] [T Y = T F= Vo 1= 1 1T o ST 20

T ST B O Lo PP 21

GG T U ST |] (= - o = 24

(@ gF=T o] (=] SRS 28
RESUILS @NU DISCUSSION.......uuiiiiiiiiiiiiiieieaesiittteeeeeeeeeeeeeeeeeesseeeseeeeeeeeeaaaaaaaaaaesssssmmmraeaaaasaesssssnnns 28
g I 1 11 o o [o) o R 28

A2 RESUIS ...ttt ettt e et e e et e e et e e e e e e e e e e e e e e e s e e nnr e b bbb e e e et e annnnnes 28

(@ gF=T o] (=1 TP 31
(@0 1] 1113 [0 o 31
o001 0T U Tox 1 o S 31

T2 @] o 11] o o PP PPPPPPPPRRR 32

5.2 FULUIE WOTK ...ttt s e e e e e e e e emmns s s s e e e e e e e e e e e e e eesamnnseaeaeeeeeeaeeeesnnnnnnns 32

Y 0] 01T o QN PP PPPPPPPP PP 33
NOAE SOUICE COUR:. ... ittt ettt e e e e e e e e et eaaea s e e e e e e e e e e e eeeeeeeaeassbnnneeeeeeeeeeeeeensnsnnnnns 33

S [TU1F= 1o] ST 10 | o =T @ To [63

Y (=] (=) (o =1 TOTT TP TR RO PRTTRPRPRY 4 |

List of Figures
Figure 1.2 Moteino processor with embedded UHF transceiver.

http://lowpowerlab.com/moteiNO/HaNtENNAS.uvuuuiiiii e eern e e aee s 10
Figure 2.2 Screenshot of the Arduino IDE used to develop and load software on ¢eoNdotrds15
Figure 2.3 Conceptual architecture of ProjJect.........cccoooi e iiiiieeeiii e, 16
Figure 2.4 Basic software flow/arChiteCture...........oooi i 17
Figure 2.5 NetLogo Simulation Software showing Network configuration(Top). Triangulation from
VT pToTo [= To 1 o] o 4 RSP 18
Figure 2.7 The Gantt chart for project development.............cccooviiiieeeii e 19
Figure 3.1 IDevelopment team with that illustrates teamwork required.[3].........cccceeeeiiiiieeennnnns 21
Figure 3.2 Eurga Software formulizing function to help redueagulation error..............cccveveeee. 23
Figure 3.3 Arduino serial monitor interface [4).......cooooooiiriiiiieee e 24
Figure 3.4 Simulator software user interface and basic descriplions............ccccvvecceeeeeeeeeinnnnn 25
FIGUIE 3.5 SENSOT UML ..ottt e s e e e e e ettt eeeee e e e e e e e e e e e e e e e eeeas st abnnneeeeeeeeesessnrnnnnns 26
Figure 3.6 NOJE State DIAGIAIML.uuueiiieiiiiieiiieeeree ettt e e e e e e e e e e e e e s s amme e e e e e e e e e e e e s nees s anne 27
Figure 4.1 Moteino capable MICTOPNANE.uuuiiii e eeeeie e e e e e e e e e e e eeeeaanes 29

Figure 5.1 Remote Sensing research team in the ICAN lab. Left to right: Dr. Martin Cenek, Lance
Leber, Matthew DeVvins, MIKE& MODIBY.............uuuuiiiiii i e s seeeie s e e e e e e e e e e e e e eeeeananaens 31

file:///C:/Users/MO%20Laptop/Desktop/1Mike%20School/1Spring2016/Capstone/Final/Mobley_final.docx%23_Toc447730057

CHAPTER 1. Introduction

Chapter 1
Introduction

1.1 Introduction

This research aims to find a solution for an inexpensive, reliable, low power cocatmmplatform

for sensor networks in the arctic and subtic regions This project is funded by the Department of
Homeland Security as part thfe Arctic Domain Awarene<3enter of ExcellencéADAC) [1]. This
network needs to possess some attribbésgd on the location and environment it will be deployed in.
Some of these attributes include: asynchronous operation, low power consumption, decentralized
operationyedundancyselfhealing, limited localized processirand flexibledesign. Today, renote
sensing technologies are deployed from a variety of innovative platforms, such as satellites, airplanes,
boats, and unpiloted aeriathicles terrestrial and underwater vehicles, as well as fixed and mobile
distributed network§2]. However, most othese networks are expensive and require significant
infrastructure support for operations and maintenance. We will demonstrate a low cost reliable
alternative that requires minimal support.

Our solution is to create a homogeneouspe@eer sensor me&ork with the capability for each node

within the network to selfliscover the shortest path, based on the number of hops, to each of four edge
nodes configured as readout nodes. This is done using a distant vector algorithm designed specifically
for oursensor network. The nodes do not have global knowledge of the rest of the network nor are
they aware of their own gedocation. Because the nodes are small and identical, deployment into a
network grid can be easily accomplished using airplane, @ilbégrrainvehicle or by foot. The sensor
datathat iscollected will be limited only to the types of sensors available to connect to the network
nodes themselves. This provides exceptional flexibility for connecting sensors that produce either a
digital or analog outpuas well as multiple senor types simultaneously

CHAPTER 1. Introduction

Photo: ACECRC/IMAS

Figure 1.1 Conceptual application of the sensor network deployed to monitor and report ice sheet
break up by sensing sound and/or movement within the ice $thettork nodes are simulated by red
dots. This photo was altered to show conceptual design from a photo at:
http://www.antarctica.gov.au/science/cestience/2010/easuringfastice-in-antarctica

1.2 Application

Our implementatiomsesa low-cost off the shelf programmable sensor with RF capabilities to

construct a decentralized asynchronous network to detect a desired event or condition. The sensors
propagate the information through the network to specially configured terrkimais) as readout
sensor®r nodedo interpret the data. This applicatiwill be tested in a controlled laboratory
environment with sensor nodes laid out in a grid pattern. By testing the network in this manner, we
will be able to quickly isolate bugs and refactor code asssacg. Additionally, by demonstrating
network operation with so many sensors in close proximity, we can build a robust application that can
handle interference and packet collisions with minimal affédte.also usagent based model

simulation softwaréo predict behavior and isolate potential problenitie agent based software used

for this purpose will be NetLogo. Thatform chosen for the sensor network platform is the Moteino
with an integrated ultraiigh frequency (UHF) transceiver embeddedhe Moteino is used for

application execution and sensor signal processing and the UHF transceiver provides connectivity links
required for network operations.

CHAPTER 1. Introduction

Moteino with added pins and
quarter wave wire antenna

Integrated RFM69 transceiver
(green board)

sllellelalieile lalle

~ ¥ ¥~
¢ »
[~
<
“w
\J
“
o
“
<
‘
< 1] &
- L
~ “
— <
S (8]
— @
- “©

N iIRIQIQICICEO
1
> wleYel ¢

Figure 1.2Moteino processor with embedded UHF transceiver.
http://lowpowerlab.com/moteirn@antennas

1.3 Motivation

With climate change having substantial effects in the arctic region, increased accessibility will impact
how these areas are used. Commerce, research, and access to natural resources will result in a
noteworthy increase of humamaffic. The ability to monitor the impact of this activity is vital to help
determine the environmental impact of the increasedAsed i t i onal |y, todayo6s
ever growing concern. With miles and miles of both land and maritimerspte challenge of
monitoring such vast areas with current techniques such as manned patrols or satellites is both
expensive and limited in capabilitiedlthough illegal border crossings are usually thought of at the
southern U.S. border the northewrdber is porous and vast and illustrates a significant security threat.
Last year, in an attempt to slow the flow of illegal immigration from Canada,(OE? Customs

Border Patrolspent $20 million on a surveillance system that monitors 34 miles Stti@air River
bordering Michigan and Canadla popular destination for illegal immigrants crossing from Canada

CHAPTER 1. Introduction

[4].

Figure 1.3Image depicting the 5,525 mile U.S. Canadian border. Most of which is not actively
monitored by security personnel. Imairce: carsmemes.com

1.4 Recent Developments

With more and more powerful computing capabilities in an increasingly small and efficient package,
remote sensing data hbecomemore accessible and widespread in recent yeting exploitation of

this tetinology has gone from developments mainly conducted by government intelligence agencies to
those carried out by general users and comparessing, extracting and correlating data poses quite
the challenge in remote regions with limited infrastructur€or this purpose, high performance
computing such as clusters, distributed networks or specialized hardware devices provide important
architectural developments to accelerate the computations related with information extraction in remote
sensing[5]. With well thought out software and a flexible hardware platform, highly complex and
capable networks can be designed.

CHAPTER 1. Introduction

Figure 1.4Initial wiring diagram design that depicts a basic network configuration in the lab. In
deployment configuration, power asdnsor inputs will not be shared and will be unigue to each
individual sensor.

CHAPTER 2Integration and Modeling

Chapter 2
System Integration and Modeling

2.1 Technology Used for Implementation

As with any project idea and plans, decisions have to be made based on a number oationsidér

few of those considerations include cost, performance, suitability, and implementation options. For our
project, we needed to consider both hardware and software. Since our project is to develop a
communications infrastructure for a deceng@di asynchronous sensor network that would be stable

and robust enough to operate autonomously in the harsh arctic regions for long periods of time and
with minimal maintenance, our first priority was to select the hardware that would serve as backbone to
this project. The hardware that would serve as the network nodes to relay vital information of concern
is the Arduino clones, the Moteino. Although this platform may not turn out to be suitable for final
development, they will serve well as our prootohcept mechanism.

What is a Moteino? Moteino is a low cost kpewer opersource wireless Arduino compatible
development platform based on the popular ATMega328 chip used in traditional Arduinos, making it
100% compatible with the Arduino IDE (programmienvironment) [1]. One of the most attractive

things about this platform for an undergraduate research project standpoint is the cost to performance
ratio. The Moteino we chose is quite capable in a $20 package. Some of the specifications are [1]:

Microcontrolleri Atmega328

Transceivei RFM69

Operating frequenciés434MHz, 868MHz, 915MHz

Pinsi 14 digital, 8 analog

Clock speed 16MHz

Flash memory 32KB

SRAM 2KB

EEPROMi 1KB

In addition to the specifications, our choice for the Moteino was alsa loaise platform with such

features as being small for ease of deployment with low visible and environmental footprint. Versatile
design allows a wide range of sensor inputs for increased flexibility. Low power consumption along
with the ability to turn a and off features in software maximizes power efficiency based on
performance and deployment needs. The relatively long RF range increases communication reliability
and reduces required number of nodes to monitor a given area. Finally, the abilrigiessiy
program the devices makes for an attractive f eeé

= =4 -8 -8 _9_9_°2_2

CHAPTER 2Integration and Modeling

49 node network
with configurable
connectivity

Figure 2.1Matrix of 49 Moteinos in a 7x7 grid with 4 readout nodes. This configuration is used within
the lab for software testing and demoastns.

The selection of a design platform as well as a software language was an easy one. The Moteinos work
well using the integrated development environment designed to support the Arduinos (the devices the
Moteino was developed from). The IDE is fiem®&d can be downloaded frdmtps://www.arduino.cc/

and provides the functionality necessary to interface with the hardware via universal serial bus
connectivity. For the software, we chose C/C++ for a coupleasfans. Moteino architecture is

already set up to execute C code. Also, the amount of control with pointers and available data
structures provided in the C language made it easy for us to configure the software to meet our needs.
We use several providdithraries including those to help with serial I/O, radio functionality, sound
processing, and camera interface.

https://www.arduino.cc/

CHAPTER 2Integration and Modeling

P

Snapshot2 | Arduino 1.6.4

File Edit Sketch Tools Help

Snapshot2

10z Serial.println{"lo camera found?"); -

103 return;

104 }

105 /4 Print out the camera version information (optional)

loe char *reply = cam.getVersioni);

107 if (reply == 0) |

lo8 Serial.print("Failed to get wersion™):

109 1} else {

110 Serial.printin("--——--——--—--——--—- "y

111 Serial.print(reply): “

11z Serial.printin("--——--——--—--——--—- "y

113 1

114
' 115 /4 3et the picture size - you can choose one of £40x480, 3Z0xZ40 or 1&0x1Z0

1le /f Femember that bigger pictures take longer to transmit!

117

118 cam. setImageSize (VCOT06_£40x480) ; f4 biggest)
' 118 Jfcam. setImagesize (VCOT0E_320x240) ; S medium 3

120 Jican, setImagelize (VCOT06_LE0x120) ; S/ small 4
r 121

122 Jf Tou can read the szize back from the camera ioptional, but maybe useful?)

123 uint8_t imgsize = cam.getImagesSize();

124 Serial.princ{"Image =ize: "):

125 if (imgsize == WCO706_640x480) Serial.println("e40x450");

126 if (imgsize == VCOT706_320x240) Serial.println{"320x240");: -

l 1 2
Sketch uses 15 Ftes yf program pace. Maximum is
of dynamic memory, leaving 754 bytes for local variables. Maximum

Arduine Uno on COME

-

Figure 2.2Screenshot of the Arduino IDE used to develop and load software on the Moteino boards.

The software architecture is like a tydi€program with some variation. Due to the nature of the
software running in a continuous loop and performing a very specialized function, the code is mostly
one continuous file although inner classes are used for the Jiisk@mplementation. Like sny C

programs include statements and global variables are declared at or near the top of the program. For
the hardware to be configured and run properly, two required functions are required, setup() and loop().
As the name implies, the setup functioms$ed to initialize variables and perform any hardware
configuration the application may need. A few examples include the radio frequency, the pin
configuration for I/O, serial baud rates, node identifiers etc. The loop function is equivalent to a main
function in most software programs. The difference here is that the loop function repeats itself over
and over until the Moteino is shut down. Because of this ever looping nature of the software, particular
considerations must be taken into account whesngahing the software. Outside of the main loop,

CHAPTER 2Integration and Modeling

other developer defined functions can be written that are called at various points from within the main
loop function.

2.2 Design View of System Architecture

The system architecture consist of a develogmeachine, individual communication nodes, specially
configured readout nodes, astamd one si mul ator for testing and a
collect, store, and analyze data from the network.

Software Design

Collect/Analyze

Deploy

Figure 2.3Conceptual architecture of project

CHAPTER 2Integration and Modeling

The software architecture of the Moteino is a program that 1) initializes the parameters of the
individual node, 2) completes neighboratigery/shortest path calculations, 3) listens for and queues
potential events, 4) shares information about events with neighbors, 5) receives potential events from
neighbors, 6) analyzes event based on predefined parameters to determine event autf)artiaity,
potentials events from neighbors, and 8) repeats stéps 1

Initialize Moteino

Neighbor Discovery/Hop

/ Detect PotentialEvents

Shares Potential Events

Receives Potential Events

N\ —

Figure 2.4Basic software flow/architecture

\WWAVAVAVAVY)

2.3 Components Used in Project Development

Because the hardware and software basics have been discessedspy, in this section we will focus

on the simulation software utilized to model the network behg&]orOne of the challenges with this
project is the terrestrial footprint required to test deployment and functionality. Because it is unrealistic
to deploy and test the network after each software or hardware change, we produced a mockup of the
network using the actual hardware attached to a peg board substrate in a 7x7 matrix (see Figure 2.1).
This arrangement works well for much of the testingyéner, we are dealing with 52 radios in a

confined space all trying to talk to each other at the same time. Additionally, the nodes have no
readout or screen printing capabilities as conf
behavior is undecertain conditions. We were able to overcome some of these congestion problems
with a robust software solution but it did not solve all of our issues. We decided to use an agent based
modeling simulation software to work in tandem with the hardwaveescould observe behavior and
simulate deployment behavior more closely in a controlled environment. This has enabled us to
troubleshoot and add analysis tools such as event triangulation.

CHAPTER 2Integration and Modeling

W World_Analysis_Update_4_7_MC - NetLege {CAUsers\MO Laptop\Desktop\Research\NetLogeSim}
File Edit Tools Zoom Tabs Help

Interface Infolcade

. iew updates
8 e o |) el [ey
Edit Delet= Add

normal speed continuous
Link Length Histogram
Setup clear
0
NetworkType
Regularwiggled \4
wiggle o# | [§
S
Connectivity Type
TransmitRange v 00
o 0.0
0 length o
GRIDSIZE
TRANSMISSIONR ANGE 1.3
findShortestPaths
Send Message clearMessage
MESSAGESTARTNODE
WaveProp
createfile loadFromFile
Analyze Network
checkTriangulation | 100 ‘
TriangulationStats

testUserOne0f | Lill elicked turt\cg

testUserInput

NumTriangTests 1]

Figure 2.5NetLogo Simulation Software showing Network coméifjon(Top). Triangulation from
white node (Bottom)

CHAPTER 2Integration and Modeling

2.4 Coding Methodology

Coding methodologies for this project mostly follow the agile process. All team members are assigned
tasks on a weekly basis by the project manager Dr. Martin Cenek. Althatlgimeanber has their

own area of strengths and responsibility, all members contribute as necessary to each of the other areas.
We started by implementing basic functionality in a simple but working network architecture. As the
project has progressed wave added features and functionality that increase the complexity of the

design.

Remote Sensing Gantt Chart
RO 2116 Mr 215 Ar 0t
D Task Name Sart Finish Duration
U3L] 27 |04 | 200 | 28| 36 | 313|320 | 327 | 43 | 410|417 |44
1 | Littleetobig Econversion 21016 2152016 11d
2. | Sound andlysis 282016 2242016 Ki e
3| icture processig 2202016 382016 1]
4 | Deployment Prep 3152016 3302016 1 e
5 | Harcwre Deployment 32912016 32912016 0 ¢
6 | Initial Data analyzation 3302016 4292016 2

Figure 2.7The Gantt chart for project development.

CHAPTER 3. Design anhTesting/User Interface

Chapter 3
Design and Testing / User Interface

3.1 Project Management

For the new deeloper, project management is not well understood or appreciated for its importance to
the success and failure of software design, development, and implementation. Most developers just
want a problem statement or requirements list and they wantto stacti n g . After all,
whole point to software development; producing working code? For a lot of people, it is difficult to see
the fruits of project management. In most cases, the contributions are abstract. While the developers
produce sorething that can be seen and measured [1]. To appreciate project management, we must
define and understand some of the roles of they play and how they fit into the larger puzzle.

Team Leadership: As talented as a group of good developers are, the hidteirgabs lend

themselves to working alone. The project manager, as a team leader, is the glue that binds teams into
cohesive working groups and makes sure that all members are focused on the right areas and pointed in
the same direction. The ability do this effectively keeps the project on track and ensures it does not
stray from the desired end result. Additionally, a good project manager exercises situational leadership
to exploit and maximize team member strengths while controlling any pétesaina conflicts. While

team leadership is difficult to measure in terms of time and money, the dividends are unmistakable.

Project Leadership: Although a project is not a living breathing thing, if not properly managed it can
take on a life of its ownlnstead of the team leading the project, the project leads the team. This can
result in a product that diverges from its intended path and ends up being incomplete or ineffective at
its intended purpose. A good project manager keeps a project onyrashtmually clarifying

requirements, redirecting the team as required, and ensuring the project stays within its intended scope.

Crisis Manager: If team members had to drop what they were doing each time a client or management
issue arose, nothing woudder get done. Issues can range from technology, personnel, budget, timing,
and client interface just to name a few. The project manager can deflect or absorb most of these issues
and mitigate any potential delays they would otherwise cause [2]. @&ps kprojects on track and in

scope.

Design Methodology: There are many different design methodologies in use today from agile and
scrum to waterfall. Many developers prefer one approach over the others based on personal experience
and preference. Iffeup to the team, the design methodology could turn into a contentious debate.
There are arguments over which is the best approach but the fact of the matter is that it is entirely

CHAPTER 3. Design anhTesting/User Interface

dependent upon the situation. While the waterfall method has faller fawor in recent years, there
may be projects that lend themselves to this development style. Additionally, a particular client may
require a certain methodology based on its own internal structure or policy. A project manager can
look at the big pictte and work with the customer to make an informed decision on design
methodology that is best suited for the project at hand.

For our particular project, the project lead, Dr. Cenek fulfills the role of project manager. We have
largely utilized the agilelevelopment methodology. During our weekly meetings, he discusses the
previous weeks progress (or lack thereof), and assigns tasks for the upcoming week. He also removes
any obstacles that come up such as equipment issues and working locations. réje¢hbas moved

along he has altered our focus based on new and emerging requirements.

Developer Manager

™
‘f

Analyst

Figure 3.11 Development team with that illustrates teamwork requiig@d

3.2 Test Cases

Testing is perhaps one of the most overloakgaects of software development. It is easy to fall into

the trap of testing around the way an application is built instead of testing based on requirements.

Since a developer knows exactly how his or her program operates, they will often test lhsed on
knowl edge. Many times scenarios are missed bec
design phase, why would they think of it during the testing phase? To avoid this pitfall it is a good
practice to have a separate testteamorhavwdev per s t est each otherds c

CHAPTER 3. Design anhTesting/User Interface

Because software is prone to bugs, it should be tested as thoroughly as possible. Software testing can
provide objective, independent information about the quality of software and risk of its failigers

and/or sponsors [4]. Test all conceivable configurations and input scenarios to minimize the chance
that a bug will go unnoticed. Regardless of how thorough we may think our testing process has been,
we will inevitably miss something or a custariuser will do something that we did not foresee as a
possibility.

For our project, we have the integration between hardware devices, software on the devices, the
interaction between the devices when loaded with the software and the simulator softmelle as

Before we develop software to test on the hardware platform we needed to make sure the devices were
working correctly. Below is our process for testing the hardware devices:

1. Visual inspection

2. Solder connections

3. Load Basic praleveloped software

4. Apply power

5. Run software and observe the results

Because these devices will be used as part of a large network of communication nodes, it is important
to test each one out individually to save troubleshooting the entire network to isolate a faulty node once
deployment and more advanced testing has be@nce all hardware devices were tested, we could

move on to software development. Our network structure and communication protocol goals are
relatively complex. Because of this, we have taken the approaaveioping features and behaviors

in stages and testing them as we go along (this follows our agile methodology). By taking this
approach we simplify the problem and are able to build to a more complex solution. Below are the
basic steps we have takingtesting our software:

1. Produce minimal code for node to node communication

2. Test basic communication between 2 basic nodes

Expand communications test to 3x3 grid of nodes

Increase network complexity based on design requirements
Test new software on smallid

Increase grid size to 7x7 and test

Add more complex functionality based on requirements

Test on large grid

© © N o g &> W

Repeat P as required

CHAPTER 3. Design anhTesting/User Interface

By taking this approach we were able to isolate problems quickly and focus on solutions on more
solvable problems. Thiswabled us to be able to demonstrate different working phase to customers
earlier than otherwise possible.

Given the nature of our project, not all desired behavior could be tested in the hardware or software that
was deployed on the hardware. Since tliger®t a conventional user interface, and communication

nodes exchange information through radio waves, it is a challenge to observe behavior under certain
conditions. Part of this project utilizes agent based modeling software, NetLogo, to helpuess feat

that would be otherwise impossible or impractical to test in a laboratory environment. As it turns out,
we actually used additional software called Eureqa to help formulize the results of the simulation
software. Below are the basic steps we toaksing the simulator to test network behavior:

1. Define problem and parameters to test on simulator

2. Configure software to meet conditions

3. Run simulation software

4. Collect results/analyze data

5. Implement software in hardware based on observed sim results

One paticular problem that could not be tested in hardware was the ability to isolate event location
based on triangulation to the node based on number of hops. Since our board was set up on a 4 foot by
4 foot piece of wood, it was not feasible to test trenggulation feature. Instead we implemented this
feature in the simulation software and to fine tune it we used Eureqa software to help develop a fithess
function to minimize triangulation error.

B enerpata W PrepareData Define Search Start Search Results I Reports Secure Cloud

Best Solutions of Different Sizes Plot Type: | Solution Fit Plot (defaulty |
Size Fit | Solution °
15 »=xsin(2.01x) — sin(1.99x) 2
17 y=2xsin(203x) - sin(0.129 + 1.96x)
19 »=0.0201 +xsin(2.01x) — 0.958 sin(1.97x) !
22 m}=xm(z 01x) — sin(1.99x) sin(1.65) o
21 y=xcos(4.73 +2.02x) — 0.962cos(4.81 + 1.98x) =

26 3=0.0531 + 1.03xsin(2.01x) — sin(1.97 x) sin(1.68w)

] y=xsin(2.01x)

14 y=0.743 — sin(2x) — 0.447x°
10 y=xcos(4.82+2.03x) 3
7 »y=0693 —0377x" 4
5 y=-0226x" 0 20 a0 60 80 100
R S - XAKIS: <row= kd|
Solution Details (calculated on validation data) Solutions Plotted Accuracy vs Complexity
14
Solution y=x'8in(2.008%) - 5in(1.988%%) c
.
R*2 Goodness 09 L L]
A 0.94337589 0s
Correlation T ez
Coefficient 0.9718889 g
S o8
Maximum Error 089293987 0.5
04
Mean Squared
Error 010552913 03 P

Mean Absolute

Error 025464056 o 5 10 15 20 25

s B B RS E—— e | BEE — -

Figure 3.2Eurga Software formulizing function to help veé triangulation error

CHAPTER 3. Design anhTesting/User Interface

3.3 User Interface

A quality user interface can make average or even poorly written software desirable for people to use.
People are visual creatures, and although all ¢
sem by the wuser, it is the interface that makes
Conversely, an excellent piece of software can sometimes fail to be utilized to its potential if the user
interface is not well designed. It is impanmt to consider layout, ease of use (although this is a matter

of opinion), complexity, and what the trends are (what has the user come to expect) such as button
placement and design and expected behavior with GUI widgets.

Because this project includes artiware based communications network, there is currently no user
interface associated with it. As the project nears completion a web based interface will be developed so
access to data collected by the network can be achieved. This interface wibhékeljava or PHP

and provide access to a MySql database. Although there is a lack of user interface for the network, we
do use a provided USB interface that is used to observe communication to and from nodes connected to
the computer via the USB. Additially, the simulator software has a developer configurable interface

that allows a researcher to set up network parameters for testing. This interface includes event based
buttons, sliders, graphs, text boxes, labels and an output window.

USB interface
Serial Monitor for Serlal port

YourDuinoStarter_SerialMonitor_SEND_R communicatio
Serial.print(™ Ty I n Wlth

Serial.print(ByteReceiwved, HEX):

Serial.print(™ L hardware

Serial.print{char (ByteReceived))

if (char (ByteReceived) == '1'}
{
digitalWrite(led, HIGH)

D ON
Serial.printc(”™ LED ON ") : LED CN
}

if(char (ByteReceiwved) == '0'
{
digitalWrite (led,LOW) :
Serial.print(™ LED OFF"): |v Autoscroll
}

70

Serial.printin(): the line Carriage return

Both NL & CR

f a 30,720 byte maximum)

Arduine Duemilanove vw ATmega328 on COM20

Figure 3.3Arduino serial monitor interface [4]

CHAPTER 3. Design anhTesting/User Interface

Link Length Histogram

Sefup tlear

4
i

counk

A
=
=
=

findShartestPaths

Send Message | | clearMessage

WaveFrop

i
-

treateFie loadFromFile

Analyze Network

theckTriangulation 100

TriangulationStats

testUserOneQF | | kil clicked turtln&

testUserTnput

Figure 3.4Simulator software user interface ar
basic descriptions

CHAPTER 3. Design anhTesting/User Interface

Figure 3.5Sensor UML

