

UNIVERSITY OF ALASKA ANCHORAGE

CSCE A470

CAPSTONE PROJECT

Remote Sensing in the Arctic

Author:

Mike Mobley

Supervisor:

Prof. Martin Cenek, PhD

Anchorage AK, April 2016

© Copyright 2016

by

Mike Mobley

mmobley4@alaska.edu

Version 5.3

Abstract

The purpose of this document is to describe, explain, and present the capstone project by Mike Mobley,

Matthew Devins, and Lance Leber. The capstone project is titled Remote Sensing in the Arctic. The

purpose of this project is to create a communications network capable of relaying sensor data back to a

home base station for analyzation. This project is funded by the Department of Homeland Security as

part of the Arctic Domain Awareness Center of Excellence.

Motivation: With climate change having substantial effects in the arctic region, increased accessibility

will impact how these areas are used. Commerce, research, and access to natural resources will result

in a noteworthy increase of human traffic. The ability to monitor the impact of this activity is vital to

help determine the environmental impact of the increased use.

Problem Statement: The arctic regionôs vast size coupled with the diversity of potential conditions to

monitor requires a low cost option to detect conditional changes or events and isolate their locations

within a reasonable area.

Overview:

This project consists of two major parts, the communication network and the simulator. The

communication network is designed to be self-healing and operate in a hostile environment. Each node

will be attached to a sensor type based on the application the network is intended for. We will test our

network with audio sensors. If the nodeôs sensor detects an event, the node will append information to

uniquely identify the event in a data structure and transmit the event to one of four readout

nodes/stations for storage or analysis.

This project was developed in short iterations utilizing the agile methodology. as new features were

introduced, they would get coded and tested then implemented. Because testing the network in a

deployed environment was not feasible, we decided to test many of the features with agent based

modeling software.

The software for the nodes was developed in a specialized IDE made for our chosen hardware devices.

The language utilizes a derivation of C, C++, and some functionality is provided by third party

libraries. The simulator software was developed using NetLogo IDE and software. This platform

enabled the development of a potential triangulation method that does not require any synchronized

communication.

Approach: We used a low-cost off the shelf programmable sensor with RF capabilities to construct a

decentralized asynchronous network to detect a desired event or condition. The sensors propagate the

information through the network to specially configured terminals to interpret the data. We also used

agent based model simulation software to predict behavior and isolate potential problems.

Result: We have been able successfully configure the hardware and develop software that effectively

and efficiently detects and routes data through the network. The limitations of the sensors and the

asynchrony of the network has made location determination challenging. We are currently researching

different possibilities that will allow us to isolate given events to a reasonable area within the network

topology.

Conclusion: Successful conclusion of this research will provide a low cost option for event

monitoring in the arctic region. The versatility of the sensors will enable adaptation to cover a variety

of monitoring scenarios.

ACKNOWLEDGEMENTS

The completion of this capstone project was the result of the hard work and support of many different

people. I would like acknowledge all of their help throughout the project.

First I would like to thank Dr. Martin Cenek. As project supervisor, his leadership and mentorship was

vital to both my academic growth and ensured successful project progression. He always aimed to

challenge the team while keeping expectations within scope of an undergraduate project. I have

learned a great deal throughout this process that will stay with me for years to come.

Next, I would like to thank all of my of my group members, Matt Devins and Lance Leber for all of

their hard work and determination to work together, meet frequently, and develop a high quality

research project.

As this project represents the culmination of my undergraduate studies here at UAA, I would like to

thank the professors and staff for their excellent instruction and willingness to go the extra mile to

ensure my educational experience was both enjoyable and successful.

Additionally, I would like to thank the Department of Homeland Security whoôs funding and direction

made this opportunity possible.

Finally, I would like to thank my dedicated family who supported me throughout this project as well as

my entire educational experience. Without their love and support, it would not have been possible.

Contents
Remote Sensing in the Arctic ... 1

Chapter 1 ... 8

Introduction ... 8

1.1 Introduction ... 8

1.2 Application .. 9

1.3 Motivation ... 10

1.4 Recent Developments ... 11

Chapter 2 ... 13

System Integration and Modeling ... 13

2.1 Technology Used for Implementation .. 13

2.2 Design View of System Architecture.. 16

2.3 Components Used in Project Development .. 17

2.4 Coding Methodology .. 19

Chapter 3 ... 20

Design and Testing / User Interface .. 20

3.1 Project Management ... 20

3.2 Test Cases ... 21

3.3 User Interface .. 24

Chapter 4 ... 28

Results and Discussion.. 28

4.1 Introduction ... 28

4.2 Results ... 28

Chapter 5 ... 31

Conclusion .. 31

5.1 Introduction ... 31

5.2 Conclusion .. 32

5.2 Future Work .. 32

Appendix A ... 33

Node Source Code: ... 33

Simulator Source Code: .. 63

References ... 79

List of Figures
Figure 1.2 Moteino processor with embedded UHF transceiver.

http://lowpowerlab.com/moteino/#antennas ... 10
Figure 2.2 Screenshot of the Arduino IDE used to develop and load software on the Moteino boards. 15

Figure 2.3 Conceptual architecture of project ... 16
Figure 2.4 Basic software flow/architecture ... 17
Figure 2.5 NetLogo Simulation Software showing Network configuration(Top). Triangulation from

white node (Bottom) ... 18
Figure 2.7 The Gantt chart for project development. .. 19
Figure 3.1 1 Development team with that illustrates teamwork required [3] ... 21
Figure 3.2 Eurqa Software formulizing function to help reduce triangulation error 23
Figure 3.3 Arduino serial monitor interface [4] .. 24

Figure 3.4 Simulator software user interface and basic descriptions .. 25
Figure 3.5 Sensor UML .. 26
Figure 3.6 Node State Diagram... 27

Figure 4.1 Moteino capable microphone .. 29
Figure 5.1 Remote Sensing research team in the ICAN lab. Left to right: Dr. Martin Cenek, Lance

Leber, Matthew Devins, Mike Mobley ... 31

file:///C:/Users/MO%20Laptop/Desktop/1Mike%20School/1Spring2016/Capstone/Final/Mobley_final.docx%23_Toc447730057

CHAPTER 1. Introduction

Chapter 1

Introduction

1.1 Introduction

This research aims to find a solution for an inexpensive, reliable, low power communication platform

for sensor networks in the arctic and sub-arctic regions. This project is funded by the Department of

Homeland Security as part of the Arctic Domain Awareness Center of Excellence (ADAC) [1]. This

network needs to possess some attributes based on the location and environment it will be deployed in.

Some of these attributes include: asynchronous operation, low power consumption, decentralized

operation, redundancy, self-healing, limited localized processing, and flexible design. Today, remote

sensing technologies are deployed from a variety of innovative platforms, such as satellites, airplanes,

boats, and unpiloted aerial vehicles, terrestrial and underwater vehicles, as well as fixed and mobile

distributed networks [2]. However, most of these networks are expensive and require significant

infrastructure support for operations and maintenance. We will demonstrate a low cost reliable

alternative that requires minimal support.

Our solution is to create a homogeneous peer-to-peer sensor network with the capability for each node

within the network to self-discover the shortest path, based on the number of hops, to each of four edge

nodes configured as readout nodes. This is done using a distant vector algorithm designed specifically

for our sensor network. The nodes do not have global knowledge of the rest of the network nor are

they aware of their own geo-location. Because the nodes are small and identical, deployment into a

network grid can be easily accomplished using airplane, boat, all-terrain vehicle, or by foot. The sensor

data that is collected will be limited only to the types of sensors available to connect to the network

nodes themselves. This provides exceptional flexibility for connecting sensors that produce either a

digital or analog output as well as multiple senor types simultaneously.

CHAPTER 1. Introduction

Figure 1.1 Conceptual application of the sensor network deployed to monitor and report ice sheet

break up by sensing sound and/or movement within the ice sheet. Network nodes are simulated by red

dots. This photo was altered to show conceptual design from a photo at:

http://www.antarctica.gov.au/science/cool-science/2010/measuring-fast-ice-in-antarctica

1.2 Application
Our implementation uses a low-cost off the shelf programmable sensor with RF capabilities to

construct a decentralized asynchronous network to detect a desired event or condition. The sensors

propagate the information through the network to specially configured terminals known as readout

sensors or nodes to interpret the data. This application will be tested in a controlled laboratory

environment with sensor nodes laid out in a grid pattern. By testing the network in this manner, we

will be able to quickly isolate bugs and refactor code as necessary. Additionally, by demonstrating

network operation with so many sensors in close proximity, we can build a robust application that can

handle interference and packet collisions with minimal affects. We also use agent based model

simulation software to predict behavior and isolate potential problems. The agent based software used

for this purpose will be NetLogo. The platform chosen for the sensor network platform is the Moteino

with an integrated ultra-high frequency (UHF) transceiver embedded. The Moteino is used for

application execution and sensor signal processing and the UHF transceiver provides connectivity links

required for network operations.

CHAPTER 1. Introduction

Figure 1.2 Moteino processor with embedded UHF transceiver.

http://lowpowerlab.com/moteino/#antennas

1.3 Motivation
With climate change having substantial effects in the arctic region, increased accessibility will impact

how these areas are used. Commerce, research, and access to natural resources will result in a

noteworthy increase of human traffic. The ability to monitor the impact of this activity is vital to help

determine the environmental impact of the increased use. Additionally, todayôs security needs are an

ever growing concern. With miles and miles of both land and maritime borders, the challenge of

monitoring such vast areas with current techniques such as manned patrols or satellites is both

expensive and limited in capabilities. Although illegal border crossings are usually thought of at the

southern U.S. border the northern border is porous and vast and illustrates a significant security threat.

Last year, in an attempt to slow the flow of illegal immigration from Canada, CBP (U.S. Customs

Border Patrol) spent $20 million on a surveillance system that monitors 34 miles of the St. Clair River

bordering Michigan and Canadaða popular destination for illegal immigrants crossing from Canada

CHAPTER 1. Introduction

[4].

Figure 1.3 Image depicting the 5,525 mile U.S. Canadian border. Most of which is not actively

monitored by security personnel. Image source: cars-memes.com

1.4 Recent Developments
With more and more powerful computing capabilities in an increasingly small and efficient package,

remote sensing data has become more accessible and widespread in recent years. The exploitation of

this technology has gone from developments mainly conducted by government intelligence agencies to

those carried out by general users and companies. Sensing, extracting and correlating data poses quite

the challenge in remote regions with limited infrastructure. For this purpose, high performance

computing such as clusters, distributed networks or specialized hardware devices provide important

architectural developments to accelerate the computations related with information extraction in remote

sensing [5]. With well thought out software and a flexible hardware platform, highly complex and

capable networks can be designed.

CHAPTER 1. Introduction

Figure 1.4 Initial wiring diagram design that depicts a basic network configuration in the lab. In

deployment configuration, power and sensor inputs will not be shared and will be unique to each

individual sensor.

CHAPTER 2. Integration and Modeling

Chapter 2

System Integration and Modeling

2.1 Technology Used for Implementation
As with any project idea and plans, decisions have to be made based on a number of considerations. A

few of those considerations include cost, performance, suitability, and implementation options. For our

project, we needed to consider both hardware and software. Since our project is to develop a

communications infrastructure for a decentralized asynchronous sensor network that would be stable

and robust enough to operate autonomously in the harsh arctic regions for long periods of time and

with minimal maintenance, our first priority was to select the hardware that would serve as backbone to

this project. The hardware that would serve as the network nodes to relay vital information of concern

is the Arduino clones, the Moteino. Although this platform may not turn out to be suitable for final

development, they will serve well as our proof of concept mechanism.

What is a Moteino? Moteino is a low cost low-power open-source wireless Arduino compatible

development platform based on the popular ATMega328 chip used in traditional Arduinos, making it

100% compatible with the Arduino IDE (programming environment) [1]. One of the most attractive

things about this platform for an undergraduate research project standpoint is the cost to performance

ratio. The Moteino we chose is quite capable in a $20 package. Some of the specifications are [1]:

¶ Microcontroller ï Atmega328

¶ Transceiver ï RFM69

¶ Operating frequencies ï 434MHz, 868MHz, 915MHz

¶ Pins ï 14 digital, 8 analog

¶ Clock speed ï 16MHz

¶ Flash memory ï 32KB

¶ SRAM 2KB

¶ EEPROM ï 1KB

In addition to the specifications, our choice for the Moteino was also based on a platform with such

features as being small for ease of deployment with low visible and environmental footprint. Versatile

design allows a wide range of sensor inputs for increased flexibility. Low power consumption along

with the ability to turn on and off features in software maximizes power efficiency based on

performance and deployment needs. The relatively long RF range increases communication reliability

and reduces required number of nodes to monitor a given area. Finally, the ability to wirelessly

program the devices makes for an attractive feature when considering the projectôs deployment area.

CHAPTER 2. Integration and Modeling

Figure 2.1 Matrix of 49 Moteinos in a 7x7 grid with 4 readout nodes. This configuration is used within

the lab for software testing and demonstrations.

The selection of a design platform as well as a software language was an easy one. The Moteinos work

well using the integrated development environment designed to support the Arduinos (the devices the

Moteino was developed from). The IDE is free and can be downloaded from https://www.arduino.cc/ ,

and provides the functionality necessary to interface with the hardware via universal serial bus

connectivity. For the software, we chose C/C++ for a couple of reasons. Moteino architecture is

already set up to execute C code. Also, the amount of control with pointers and available data

structures provided in the C language made it easy for us to configure the software to meet our needs.

We use several provided libraries including those to help with serial I/O, radio functionality, sound

processing, and camera interface.

https://www.arduino.cc/

CHAPTER 2. Integration and Modeling

Figure 2.2 Screenshot of the Arduino IDE used to develop and load software on the Moteino boards.

The software architecture is like a typical C program with some variation. Due to the nature of the

software running in a continuous loop and performing a very specialized function, the code is mostly

one continuous file although inner classes are used for the linked-list implementation. Like many C

programs include statements and global variables are declared at or near the top of the program. For

the hardware to be configured and run properly, two required functions are required, setup() and loop().

As the name implies, the setup function is used to initialize variables and perform any hardware

configuration the application may need. A few examples include the radio frequency, the pin

configuration for I/O, serial baud rates, node identifiers etc. The loop function is equivalent to a main

function in most software programs. The difference here is that the loop function repeats itself over

and over until the Moteino is shut down. Because of this ever looping nature of the software, particular

considerations must be taken into account when designing the software. Outside of the main loop,

CHAPTER 2. Integration and Modeling

other developer defined functions can be written that are called at various points from within the main

loop function.

2.2 Design View of System Architecture
The system architecture consist of a development machine, individual communication nodes, specially

configured readout nodes, a stand-alone simulator for testing and analysis, and a ñbase stationò used to

collect, store, and analyze data from the network.

Figure 2.3 Conceptual architecture of project

 Software Design

 Upload

Deploy
 Collect/Analyze

CHAPTER 2. Integration and Modeling

The software architecture of the Moteino is a program that 1) initializes the parameters of the

individual node, 2) completes neighbor discovery/shortest path calculations, 3) listens for and queues

potential events, 4) shares information about events with neighbors, 5) receives potential events from

neighbors, 6) analyzes event based on predefined parameters to determine event authenticity, 7) relays

potentials events from neighbors, and 8) repeats steps 1-7.

 11111

Figure 2.4 Basic software flow/architecture

2.3 Components Used in Project Development
Because the hardware and software basics have been discussed previously, in this section we will focus

on the simulation software utilized to model the network behavior [6]. One of the challenges with this

project is the terrestrial footprint required to test deployment and functionality. Because it is unrealistic

to deploy and test the network after each software or hardware change, we produced a mockup of the

network using the actual hardware attached to a peg board substrate in a 7x7 matrix (see Figure 2.1).

This arrangement works well for much of the testing, however, we are dealing with 52 radios in a

confined space all trying to talk to each other at the same time. Additionally, the nodes have no

readout or screen printing capabilities as configured so it is not always apparent what the nodesô

behavior is under certain conditions. We were able to overcome some of these congestion problems

with a robust software solution but it did not solve all of our issues. We decided to use an agent based

modeling simulation software to work in tandem with the hardware so we could observe behavior and

simulate deployment behavior more closely in a controlled environment. This has enabled us to

troubleshoot and add analysis tools such as event triangulation.

Initialize Moteino

Neighbor Discovery/Hop

Matrix

Detect Potential Events

Shares Potential Events

Receives Potential Events

Analyzes Potential Events

Triggers or Discards Events

CHAPTER 2. Integration and Modeling

Figure 2.5 NetLogo Simulation Software showing Network configuration(Top). Triangulation from

white node (Bottom)

CHAPTER 2. Integration and Modeling

2.4 Coding Methodology
Coding methodologies for this project mostly follow the agile process. All team members are assigned

tasks on a weekly basis by the project manager Dr. Martin Cenek. Although each member has their

own area of strengths and responsibility, all members contribute as necessary to each of the other areas.

We started by implementing basic functionality in a simple but working network architecture. As the

project has progressed we have added features and functionality that increase the complexity of the

design.

ID Task Name Start Finish Duration
Feb 2016 Mar 2016 Apr 2016

1/31 2/7 2/14 2/21 2/28 3/6 3/13 3/20 3/27 4/3 4/10 4/17 4/24

1 11d2/15/20162/1/2016Little e to big E conversion

2 13d2/24/20162/8/2016Sound analysis

3 12d3/8/20162/22/2016Picture processing

4 12d3/30/20163/15/2016Deployment Prep

6 23d4/29/20163/30/2016Initial Data analyzation

5 0d3/29/20163/29/2016Hardware Deployment

Remote Sensing Gantt Chart

Figure 2.7 The Gantt chart for project development.

CHAPTER 3. Design and Testing/User Interface

Chapter 3

Design and Testing / User Interface

3.1 Project Management
For the new developer, project management is not well understood or appreciated for its importance to

the success and failure of software design, development, and implementation. Most developers just

want a problem statement or requirements list and they want to start coding. After all, isnôt that the

whole point to software development; producing working code? For a lot of people, it is difficult to see

the fruits of project management. In most cases, the contributions are abstract. While the developers

produce something that can be seen and measured [1]. To appreciate project management, we must

define and understand some of the roles of they play and how they fit into the larger puzzle.

Team Leadership: As talented as a group of good developers are, the nature of their jobs lend

themselves to working alone. The project manager, as a team leader, is the glue that binds teams into

cohesive working groups and makes sure that all members are focused on the right areas and pointed in

the same direction. The ability to do this effectively keeps the project on track and ensures it does not

stray from the desired end result. Additionally, a good project manager exercises situational leadership

to exploit and maximize team member strengths while controlling any potential team conflicts. While

team leadership is difficult to measure in terms of time and money, the dividends are unmistakable.

Project Leadership: Although a project is not a living breathing thing, if not properly managed it can

take on a life of its own. Instead of the team leading the project, the project leads the team. This can

result in a product that diverges from its intended path and ends up being incomplete or ineffective at

its intended purpose. A good project manager keeps a project on track by continually clarifying

requirements, redirecting the team as required, and ensuring the project stays within its intended scope.

Crisis Manager: If team members had to drop what they were doing each time a client or management

issue arose, nothing would ever get done. Issues can range from technology, personnel, budget, timing,

and client interface just to name a few. The project manager can deflect or absorb most of these issues

and mitigate any potential delays they would otherwise cause [2]. This keeps projects on track and in

scope.

Design Methodology: There are many different design methodologies in use today from agile and

scrum to waterfall. Many developers prefer one approach over the others based on personal experience

and preference. If left up to the team, the design methodology could turn into a contentious debate.

There are arguments over which is the best approach but the fact of the matter is that it is entirely

CHAPTER 3. Design and Testing/User Interface

dependent upon the situation. While the waterfall method has fallen out of favor in recent years, there

may be projects that lend themselves to this development style. Additionally, a particular client may

require a certain methodology based on its own internal structure or policy. A project manager can

look at the big picture and work with the customer to make an informed decision on design

methodology that is best suited for the project at hand.

For our particular project, the project lead, Dr. Cenek fulfills the role of project manager. We have

largely utilized the agile development methodology. During our weekly meetings, he discusses the

previous weeks progress (or lack thereof), and assigns tasks for the upcoming week. He also removes

any obstacles that come up such as equipment issues and working locations. As the project has moved

along he has altered our focus based on new and emerging requirements.

Figure 3.1 1 Development team with that illustrates teamwork required [3]

3.2 Test Cases
Testing is perhaps one of the most overlooked aspects of software development. It is easy to fall into

the trap of testing around the way an application is built instead of testing based on requirements.

Since a developer knows exactly how his or her program operates, they will often test based on this

knowledge. Many times scenarios are missed because if the developer didnôt think of it during the

design phase, why would they think of it during the testing phase? To avoid this pitfall it is a good

practice to have a separate test team or have developers test each otherôs code instead of their own.

CHAPTER 3. Design and Testing/User Interface

Because software is prone to bugs, it should be tested as thoroughly as possible. Software testing can

provide objective, independent information about the quality of software and risk of its failure to users

and/or sponsors [4]. Test all conceivable configurations and input scenarios to minimize the chance

that a bug will go unnoticed. Regardless of how thorough we may think our testing process has been,

we will inevitably miss something or a customer/user will do something that we did not foresee as a

possibility.

For our project, we have the integration between hardware devices, software on the devices, the

interaction between the devices when loaded with the software and the simulator software as well.

Before we develop software to test on the hardware platform we needed to make sure the devices were

working correctly. Below is our process for testing the hardware devices:

1. Visual inspection

2. Solder connections

3. Load Basic pre-developed software

4. Apply power

5. Run software and observe the results

Because these devices will be used as part of a large network of communication nodes, it is important

to test each one out individually to save troubleshooting the entire network to isolate a faulty node once

deployment and more advanced testing has begun. Once all hardware devices were tested, we could

move on to software development. Our network structure and communication protocol goals are

relatively complex. Because of this, we have taken the approach of developing features and behaviors

in stages and testing them as we go along (this follows our agile methodology). By taking this

approach we simplify the problem and are able to build to a more complex solution. Below are the

basic steps we have taking in testing our software:

1. Produce minimal code for node to node communication

2. Test basic communication between 2 basic nodes

3. Expand communications test to 3x3 grid of nodes

4. Increase network complexity based on design requirements

5. Test new software on small grid

6. Increase grid size to 7x7 and test

7. Add more complex functionality based on requirements

8. Test on large grid

9. Repeat 7-9 as required

CHAPTER 3. Design and Testing/User Interface

By taking this approach we were able to isolate problems quickly and focus on solutions on more

solvable problems. This enabled us to be able to demonstrate different working phase to customers

earlier than otherwise possible.

Given the nature of our project, not all desired behavior could be tested in the hardware or software that

was deployed on the hardware. Since there is not a conventional user interface, and communication

nodes exchange information through radio waves, it is a challenge to observe behavior under certain

conditions. Part of this project utilizes agent based modeling software, NetLogo, to help test features

that would be otherwise impossible or impractical to test in a laboratory environment. As it turns out,

we actually used additional software called Eureqa to help formulize the results of the simulation

software. Below are the basic steps we took in using the simulator to test network behavior:

1. Define problem and parameters to test on simulator

2. Configure software to meet conditions

3. Run simulation software

4. Collect results/analyze data

5. Implement software in hardware based on observed sim results

One particular problem that could not be tested in hardware was the ability to isolate event location

based on triangulation to the node based on number of hops. Since our board was set up on a 4 foot by

4 foot piece of wood, it was not feasible to test the triangulation feature. Instead we implemented this

feature in the simulation software and to fine tune it we used Eureqa software to help develop a fitness

function to minimize triangulation error.

Figure 3.2 Eurqa Software formulizing function to help reduce triangulation error

CHAPTER 3. Design and Testing/User Interface

3.3 User Interface
A quality user interface can make average or even poorly written software desirable for people to use.

People are visual creatures, and although all of the logic and real ñworkò of a software program is not

seen by the user, it is the interface that makes the impression and in todayôs world that goes a long way.

Conversely, an excellent piece of software can sometimes fail to be utilized to its potential if the user

interface is not well designed. It is important to consider layout, ease of use (although this is a matter

of opinion), complexity, and what the trends are (what has the user come to expect) such as button

placement and design and expected behavior with GUI widgets.

Because this project includes a hardware based communications network, there is currently no user

interface associated with it. As the project nears completion a web based interface will be developed so

access to data collected by the network can be achieved. This interface will likely be in java or PHP

and provide access to a MySql database. Although there is a lack of user interface for the network, we

do use a provided USB interface that is used to observe communication to and from nodes connected to

the computer via the USB. Additionally, the simulator software has a developer configurable interface

that allows a researcher to set up network parameters for testing. This interface includes event based

buttons, sliders, graphs, text boxes, labels and an output window.

Figure 3.3 Arduino serial monitor interface [4]

USB interface

for serial port

communicatio

n with

hardware

nodes.

CHAPTER 3. Design and Testing/User Interface

Steup: The setup button clears the previous world

if one exists, populates the board with the number

of nodes specified in the grid size window, places

the nodes in the world with a level of random

irregularity.

clear: Clears all nodes and links from the world.

NetworkType: Establishes if the setup will use

wiggle, no wiggle or the initial setup pattern.

Wiggle slider: used to variably select the wiggle

offset to be used during world setup

Connectivity type: Allows the user to determine if

radio range or max node degree will be used to

determine connectivity between nodes for graph

layout.

degree slider: Used in conjunction with

connectivity type to set max node degree for graph

setup.

GridSize: Variable used to determine the two

dimensional size of the world. Number of nodes =

gridSize ^2

TRANSMISSIONRANGE: Establishes radius for

node connectivity.

findShortestPath: This calls a procedure for each

node to establish the shortest path based on number

of hops to each of the four readout nodes.

sendMessage: Triggers an event from the node

specified in the MESSAGESTARTNODE window.

create file: generates a csv file that can be used to

transfer connectivity and world parameters to

hardware devices

Analyze Network: Triggers an event from each

node in a random manner to test connectivity and

world behavior. Prints some information about the

results to the screen for user interpretation.

Check Triangulation: Triggers an event from each

node and records/displays results relevant to the

triangulation method

Triangulation Stats: Gathers triangulation stats on

several world configuration iterations and dumps

relative information to a file.

Figure 3.4 Simulator software user interface and

basic descriptions

CHAPTER 3. Design and Testing/User Interface

Figure 3.5 Sensor UML

