UNIVERSITY OF ALASKA ANCHORAGE

CSCE A470

CAPSTONE PROJECT

Operation Christmas Child
Data Management System
Database

Author:

David Bretz

Supervisor:

Prof. Kenrick Mock, PhD

Anchorage AK, May 2016

1

LUAA Computer Science &
Engineering Department
UNIVERSITY of ALASKA ANCHORAGE

© Copyright 2016

by
David Bretz

dmbretz@alaska.edu

Abstract

This paper is about the database for the Operation Christmas Child Data Management System. The
database will be used to reduce the work required to collect and maintain donor information and
donation statistics by Year-Round Volunteers. A website will be created as the interface for the
database and will be used by both donors and Year-Round Volunteers. The database needs to be able to
store location information for both Drop-Off Locations and events. This will be used by the interface to
determine whether a donor is at a specific Drop-Off Location or event. The interface will do this by
determining if the donor’s coordinates and the Drop-Off Location or event’s coordinates are within
feet of eachother. The database will also need to store accounts for Year-Round Volunteers who are to
be using the system. This system will save Year-Round Volunteers weeks worth of work processing
paper Drop-Off Logs and improve data integrity.

Acknowledgments

Firstly, I would like to thank my Lord God for giving me the strength to go forward with this
project. Without him, I probably would have not finished my degree nor would | have chosen to
develop a project for Samaritan’s Purse.

I would also like to thank my mom for all the support she has provided. She always knew what
to say when I was stressed and was always willing to listen, even if she didn’t understand what I was
talking about.

| also want to thank my dad for his support for me and his concern for my betterment. He
provided great support for me through these past few years, even when | stressed him out with my
schedule and eagerness to overschedule.

Thank you to my girlfriend, Brittany Cave, for always knowing how to cheer me up when I was
down.

To Dr. Kenrick Mock, I would like to express my thanks for his support in this project. He was
always ready with feedback on the design implementation and was ready to tell me when | was adding
to much complexity.

| want to thank Dr. Adriano Cavalcanti for his support on this project. He was helpful with his
feedback and pushed me forward when | needed it.

My thanks goes out to Dr. Kirk Scott. It was him who introduced me to the world of databases
and who inspired me to undertake this project.

| want to give my thanks to Deb Bronson for sponsering the project and giving feedback when
necessary.

| would also like to express my gratitude to the Operation Christmas Child South Central
Alaska Team for allowing me to develop this project for them.

Contents

Y 0] 1 - T RO PR PP i
ACKNOWIEAGIMENTS. ...ttt ettt e e et e e s st e e e st e e e st e e enbeeeenteeeenneeeneeeennes i
Chapter 1 INTTOTUCTIONoiiiiiie ettt ettt et et et e 1

I 1o oo [0 o{ 1 o] F PP RTRUP 1

1.2 APPIICALION. ...ttt bbb 2

IR I |V [AV (oo PSPPSR 2
Chapter 2 System Integration and Modeling / Methodologyccceeiiieeiiie e 5

2.1 SYSTEIM OVEIVIBW ...ttt ettt ettt ekttt ekt ekt e e st e ket e e e eab e et e et e et e e anne e 5

2.2 Designing the Database MOElc.ooiiioiiii e 5

2.3 ReducCing DUPIICALE Dal...........cveeiiuiieiiiee ettt e e rr e e e rae e e aneeas 9

2.4 Interacting With the Database..........c.eeiiieiiiiiie e 10

2.5 PrOJECE PLAN ...ttt 10
Chapter 3 DeSigN aNd TESEINGcccuveeeiiii ettt e e e e et e e st e e e s te e e ateeeanseeenneaeennes 12

TN O - g 101 (-] - Vo= PRSPPI 12

3.2 DESIGN TOONS ...ttt ettt ree s 12

I DL 17 0T LTI =T [o PSPPSR 13
Chapter 4 USEr IMANUALooiiiiiie ittt ettt 15

4.1 OVBIVIBW.eeiee et e et e et et e et e e e st e e e st e e es e e ente e e et e e e st e e e see e e amteeeanseeeanseeeanseeeanseeeansnneannnnnans 15

A B o] 0] £ PSP PP PP PUPPPPSPUPPR 16

4.3 CONNEBCE VOIUNTEEISeeeee ettt et e et e e st e e ante e e snteeeanteeeanseeeansseeansaneennneeens 19
Chapter 5 Summary and CONCIUSIONcoiuiiiiiiiii e 20

5.1 SUIMMIAIY ..ttt ettt e e e e e e bbbttt e e e e e e e s s b bbbt e e e e e e e e aa s bbb s e e e e e e e e e e ansabbneeeaaeeeeaannns 20
F N o] 1< 1o | D OO P PSR PPR TP 23
APPENAIX Bttt b ettt ettt 24

List of Figures

Figure 1.1 Donors dropping off shoeboxes at a collection center (Samaritan's Purse, 2015)................. 1
Figure 1.2: The proposed BPM for collecting a Drop-Off Log from a donorccccccveivveiiienieinnns 2
Figure 1.3: The current BPM for the collection of donor informationcccccccoveiiiieiiic e, 3
Figure 1.4: A map of seven relay/collection centers in South Central Alaska..............ccccevviiiiieeiiinnnns 4
Figure 2.1: A blank Shoebox Drop-Off Log provided by Deb Bronsonccccccceeviveeiiieesiieeesinens 6
Figure 2.2: The tables to be used for both Year-Round and Short-Term Volunteers...........c.ccccccveevnenne 7
Figure 2.3: Database model For OCCDMSc.oiiiiie e e e sraee e 8
Figure 2.4: An example of a routine that inserts information for a personcccccevvieiieiiciieennn. 10
Figure 2.5: Project Gantt Chart............cooiuiiiiiie it e e ae et ae e nra e e nnneas 11
Figure 3.1: MySQL Workbench EER DIagramccccueiiiiiiiiiieiiieiieesee e 13
Figure 4.1 Donors dropping 0ff SHOEDOXESccviiiiiiicie e 15
Figure 4.2: Home page for OCCDIMS ..ottt 16
Figure 4.3: Donors will be able to fill a Drop-Off Log either as an individual or an organization........ 17
Figure 4.4: EVent CheCk-1n FOrM. ...t 18
Figure 5.1: A worker at the California Processing Center which also serves as a Drop-Off Location.. 21
Figure A.0.1: Database MOGEL..........c.oo i 23

CHAPTER 1: INTRODUCTION

Chapter 1
Introduction

1.1 Introduction

Operation Christmas Child Data Management System (OCCDMS) is a data entry system that will
reduce the workload of year-round volunteers. The goal of the project is to develop a system that
displays a form based on the user’s location. The system will need to know where the user is and
display a form based on the time of day and whether they are at a registered event or a shoe box Drop-
Off Location and reject them otherwise. It will also need to allow a year-round volunteer, known as a
Connect Volunteer, to view this data and use it for future decisions. This application can be modified
for use by other organizations where there are multiple events and locations that need to be managed.

vli
>

nris.t--uuU“ X
DREP’U'F‘F‘?USCE II(}!!d

Figure 1.1 Donors dropping off shoeboxes at a collection center (Samaritan's Purse, 2015)
1

CHAPTER 1: INTRODUCTION

1.2 Application

The implementation of the new data management system will request a user’s location to determine
what form the user needs. There are two situations that a user would use the forms to record
information. First, donors would visit the form page during collection week to log their donation.
Second, there are multiple events throughout the year where participants would need to register their

Fill/Complete shoe Takes shoe boxto Is willing to fill out - "
Q——{ box Relay cantar Drop.off Log? Ye: Fill out Drop-Off Log! Donor Information— — y

o =¥

OCC Donor

Volunteer

Short-Term

Figure 1.2: The proposed BPM for collecting a Drop-Off Log from a donor

Currently, companies use IP (Internet Protocol) geolocation and mobile gps location to display relevant
ads, for giving directions, or even displaying special messages. This is done using either a phone’s gps
location or using IP geolocation databases. Using this information, a relevant form can be displayed
based on their physical location.

The project will be developed under an MIT License.

1.3 Motivation

The motivation for developing the current work is my involvement with Operation Christmas Child and
an interest in using a user’s location to display information dynamically. Currently, when a donor drops
off a shoebox gift at a relay/collection center, they fill out a paper drop-off log that stating how many
boxes they are drop-off along with their contact information. This information is then entered by hand
by volunteers into an excel spreadsheet that is kept by the area coordinator (figure 1.2).

CHAPTER 1: INTRODUCTION

Fill/Complete shoe Takes shoe boxto "
Fill out D -Off L
box Relay Center tout brop-orttog

OCC Donor

i
'
|
I
|
1
|
|
|
v

Asks Donor to fill
out Drop-Off Loz

“Cartonizes” shoe
Always box{es) for transport
Foropofi___| Addoropofftagte N !
Log filled pile california
onati e n
efids

Input Drop-Off Log send updated
information into Master Excel Sheet
Master Excel Sheet to Area Coordinator
Recevdlcopy of

Master Spfead Sheet |J

h.
send Master Spread
Sheet to Year Round
Volunteer

Receive Master Excel
Spreadshezt from
Year-Round Volunteer

Short-Term Volunteer

Collect Drop-Off
Logs

Year-Round
Volunteer

OCC South-Central Area Team

Area Coordinator

Figure 1.3: The current BPM for the collection of donor information

This would be an acceptable system if this was a small project, but this is not a small project.
(Samaritan's Purse, 2015) (figure 1.2)[1]. This has become a lengthy process that takes up many hours
of personal time and is prone to errors due to illegible handwriting, missing forms, or other human
errors.

CHAPTER 1: INTRODUCTION

ey
Mount

HOUSION- © Meadow Lakes
@ Wasills ,

Big Lake.

Point
MacKenzie/ & '

(D
Anchorage’ ‘

Beluga A
i Chugach
State Park
O Alyeska
Hope
Sunrise
Portage
@
Ridgeway iy Sterling o
Funny River el /
Landing %(1) Moose Pass

Figure 1.4: A map of seven relay/collection centers in South Central Alaska

If all the data is stored on a single database where the donor’s information is entered by the donor at the
collection/relay center, data integrity will improve and the strain on volunteer’s time will be reduced,

granting them more time to reach out to the community.

CHAPTER 2: SYSTEM INTEGRATION AND MODELING

Chapter 2
System Integration and Modeling

2.1 System Overview

The system will consist of two main parts: the website and the database. The website will serve as the
interface for the database. It will allow both donors and Connect VVolunteers to input data to the
database. It will also prevent unauthorized individuals from retrieving information from the database
that they are not permitted to see.

2.2 Designing the Database Model

The focus of the project was improving data integrity and accessibility. To do this, we needed to review
how the local area team was storing and collecting their data from their donors. An interview with the
Regional Area Coordinator for Alaska and the Network Coordinator for Southcentral Alaska was
performed in order to determine what data needed to be stored in the database as well as determine how
the data would be used. We were also provided a copy of the form that they currently have donors fill
out when they drop off shoeboxes at their collection center. I, as a Connect VVolunteer, was given an old
copy of their excel spreadsheet as an example of the current system being used.

CHAPTER 2: SYSTEM INTEGRATION AND MODELING

{;’p ; Shoehox Drop-Off Log
&) ==

P DATE (MM/DD/Y

Figure 2.1: A blank Shoebox Drop-Off Log provided by Deb Bronson

We determined that the database needed to store contact information for individuals who either
attended an event set up by the local area team or when they drop off shoeboxes at one of the drop-off
locations throughout the state. The only difference between the data collected at events and at the drop-
off locations was that the at the drop-off locations, the number of shoeboxes was counted and attributed
to the drop-off location. Organizations could drop-off shoeboxes at drop-off locations as well and were
stored in the same excel spreadsheet along with the information for individuals. It was decided that we
needed to build the database to keep the information for individuals and organizations distinct. Even so,
much of the information for individuals and organizations are similar, so we made the person table and
the organization table share other contact tables that stored similar information.

Another aspect that needed to be considered in the design process was that the local area team needed
to keep track of Pastors for churches and project leaders who coordinate relations between OCC and
their organization. We were informed that it was important for the database to track when a project
leader started or stopped being a project leader for a particular organization.

The local area team needed a way to access the database. A team member would need a password
secured account. They would also need to have slightly different privileges based on their position
within the team. Team members also needed to be associated with their specific area team. To
accomplish this, we would need a table to store accounts, a table to store team members and a table to
store teams. Not all Connect VVolunteers are associated with a specific area team as they are in charge

6

CHAPTER 2: SYSTEM INTEGRATION AND MODELING

of multiple area teams. We needed to create another table to track Regional Area Coordinators and a
table to keep track of all the teams in their region.

There was another type of volunteer that needed to be tracked as well. These are known as Short-term
volunteers and were to work at the Drop-Off Locations. These volunteers were not to have direct
access to the contents of the database and were only to be tracked for liability and for potential future
work. This meant we needed to know where they volunteered at and when they started or stopped.

Contact Layer

Management i v
personiD INT
~J RegionalAreaCoordinator ¥ 1 | 7 firstiame vARCHAR(4S)
‘ ? userName VARCHAR(100) ‘ middleNam & VARCHAR (45)
F regionID INT |astName VARCHAR{45)
P P suffix V ARCHAR(45)
) 1| # phoneEmain T
1 L addressiD INT
| Rea . ~J volunteer v mailingID INT
e userName Y ARCHAR (100}
region 1
1 personiD INT
regionName Y ARCHAR(45) 0.1 1| 1
i password VARCHAR(45)
9 cmin BOOL
| i
|
|
| 1 4
I L [
| v |
|] TeamMember v _ VolunteerTime
_a startTime DATETIME
i 1 userlame Y ARCHAR(100) en
| ¥ personlD INT on
1 teamID INT
| endTime DATETIME phoneEm
| ministryTeam VARCHAR(45)
| o VERCHAR) »locationID VARCHAR(E) phanzhu
} position V (45) | ! emallade
1.7 5
1
| 9.2 : |
] Team v |
teamID INT 1 I
area VARCHAR(45) |
regionID INT !
I Events
bl —— —_ | |
|
|
[5
| 1
DropOtt Cata) Eventa
| eventlD IN
7 } ? personiD 1i
" propoff v
dropGHfiD INT
| PR © perzoni 1T
— - D INT —_
»locationID VARCHAR(S)
} | ©
} boxes INT
40 9 7 time DATETIME
|
1 propoffLocation v

locationlD VARCHAR(E) 1

1 organization! D INT
? tesmID INT

coordinatelD INT — —— —

Figure 2.2: The tables to be used for both Year-Round and Short-Term Volunteers

We needed to keep track of shoebox drop-offs in a meaningful manner. In order to accomplish this, we
created a table to store every drop-off. This table would need to store the number of shoeboxes dropped
off, the individual or organization who dropped it off, when it was dropped off, and which Drop-Off
Location it was dropped off at.

Drop-Off locations needed to be associated with a team and an organization. They needed to be

7

CHAPTER 2: SYSTEM INTEGRATION AND MODELING

associated with an organization because they were always associated with one and it allowed for easier
look-up. They also had to have a six character location ID that is assigned by OCC. This would allow
for the data collected by the local area team to be read into Samaritan’s Purse’s system.

Event information was also to be tracked, including who attended an event, where the event was, its
start and end time, as well as a description and image.

We originally planned on using Google’s API to use an organization’s address to determine whether a
person was at a Drop-Off Location or event. However, as the project developed, we decided that it
would be more practicle to assign actuall geographical coordinates to the events and Drop-Off
Locations. We then added a coordinate table the model. All of this was used to create the model shown

in figure 2.2.

Management

"~ RegionalAreaCoordinator ¥
P userName VARCHAR(100) ‘

? regionID INT

Qs 9
p
q
" Volunteer v
| Region v
userName ¥ ARCHAR{100)
regionID TNT

? personiD INT
password VARCHAR(45)
admin BOOL

regionName VARCHAR(45)

|
11

|
|
|
|
|
|
J—

1=

_] volunteerTime ¥

_] TeamMember v I 1
¥ userame VARCHAR(100) startTime DATETIME [
! usertiame v (100) ? persontD INT _l phoneemailidentifier ¥]
1 teamID INT N T
endTime DATETIME phonzEmalID INT 1 } 1
ministryTeam VARCHAR(45) b locaiontD VARCHARES) shonehumber VARCHAR(1D) | ———— —
pasition VARCHAR(45) | emailAddress VARCHAR(45) I 1
Tos 1.5
1. | 1
" Team v |
temm 1D INT 1 } |
aaaaa ARCHAR (48] | ‘
regionlD INT ‘ |
| Events | |
} " Event hd |
4 __ —
T eventID INT
name ¥ ARCHAR(45) 4
o description VARCHAR(1000) [~ —
1 | date DATE
DropOft Dats _] EventAttendee ¥
,,,,,,,,,, startTime TIME
| ! eventID INT 1 g
i endTime TIME L . |
1 ! personID INT
| ¥ organizationI D INT |
: ~J propoff \/ image BLCE I
dropOfiD INT coordinatelD INT
personID INT
o
,,,,,,,,,,, organization!D INT ———- —= —— ===
} » lecationID VARCHAR(S)
| boses INT
|
R 4 1l time DATETIME
|
_] DropOffLocation v
locationID VARCHAR(6) ‘ 1

1|t

personiD INT

Contact Layer
= = P | Projectleader ¥
PersonData ‘OrganizationData
" person v leaderID INT
personiD [NT 1 F personiD INT
4 | frsthame vaRCHAR(45) 11D INT
middieName VARCHAR(45) | 1.7 B startdate DATE
—— - v
Iastiiame V ARCHAR(45) 1 Address enddate DATE
suffix VARCHAR(45) q.* W G = L,,Ui addressID INT
1| tphenesmamo vt T T T I , Pl 1.2 street VARCHAR(45)
mailing M (40) g
addressID INT 1 E==—1 - 01 aty VARCHAR(40)
address v .
malingo T] .. === | zip VARCHAR(S)
POBox VARCHAR(30) | state VARCHAR(D)
|
|
0.1 1 1= I 4 q
] pastor v |
| 1+ -] Organization
i k
| -

? organizationID INT

position TEXT (45)

il

coardinateID INT

Figure 2.3: Database model for OCCDMS

¥ addressID INT

" coordinate

organization! D INT

officialNam e Y ARCHAR(31)

mailingID INT
phonem alID INT
hours VARCHAR(45)
website VARCHAR(45)
church BOOLEAN

v
coordinatelD INT
latitude VARCHAR{45)

lengitude VARCHAR(45)

CHAPTER 2: SYSTEM INTEGRATION AND MODELING

2.3 Reducing Duplicate Data

One of the aspects of the project was to reduce or eliminate duplicate entries for individuals and
organizations. We decided that organizations weren’t going to be too much of a problem since we
could use the name of their organization and their address as primary keys. This would allow us to still
track organizations with multiple locations. This was important to track because organizations only had
partnerships with OCC at the local level. It also allowed us to track donations from individual branches
of the organization.

Tracking donations from individuals was a little more difficult. We initially thought of having each
donor create an account using a username or email address and creating password. This would have
eliminated duplicate entries for individuals within the database. This would mean that donors would
take slightly longer when making a donation for the first time due to the need to create an account, but
subsequent donations would be quicker since all they needed to do is enter their username, password,
and the number of shoeboxes they were dropping off. This was later rejected due to how and when the
information was to be collected. Most information would be collected during a one week period in
November. This meant that donors would be likely to forget their information in the one year period
between using their account. We were also informed that there was a good number of donors who still
were not familiar with computers and didn’t use email. We instead opted to build the database to
reduce the number of duplicates rather than entirely eliminate them. To accomplish this, we decided
that in order to create an entry for a person, it would be mandatory for the person to have a first name, a
last name, and either an email address or phone number or both. Other optional information that would
be used to create an entry for a person would be their middle name and a suffix. This would allow us to
track individuals who lived in the same household and shared a phone number or email address. This
would not allow individuals to change their contact information however, as any changes to a person’s
name, email address, or phone number would result in a new entry in the person table. This was
deemed an acceptable compromise as this still would result in fewer entries for individuals than the
current system being used by the Local Area Team and did not require donors to remember an account
that they had created the year prior and hadn’t used since.

Information for Connect VVolunteers was easier to manage since these entries would require an
administrator’s approval to create an account. The account would be associated with an entry in the
person table, so they’d be able to manage their own information.

Drop-Off Locations and events would be maintained by Connect VVolunteers. As information for Drop-
Off Locations was to be sent to the Local Area Team, the risk for duplicates was low. Even so, we
made sure that a Drop-Off location with the same data could not be created. Events were treated much
the same way as Drop-Off Locations.

CHAPTER 2: SYSTEM INTEGRATION AND MODELING

2.4 Interacting with the Database

When the project was initially planned, the plan was to have all interaction with the database be done
using PHP. However, as the database grew in complexity, it was decided that I would need to create a
collection of MySQL routines and views for common actions that would be performed. This would
make it easier when working on the website as the more complex queries would have already be
created within the database. This greatly simplified the interaction between the database and the
website as queries with multiple joins that would need to be run had been reduced much simpler
queries. It also simplified inserting and updating information within the database as just creating an
entry in individual required three separate insert queries.

1 ® (CREATE PROCEDURE "insertperson’ (IN firstNamein varchar(45), IN middlenamein varchar(45), IN lastNamein varchar(45), IN suffixin varchar(45), IN streetin
varchar(45), IN cityin varchar(<9), IN zipIn varchar(5), IN statein varchar(2), IN phonein varchar(12), IN emailin varchar(45))

2 [JBEGIN

3 INSERT IGNORE INTO Address(street, city, zip, state) VALUES(streetin, cityin, zipin, statein);

4 INSERT IGNORE INTO PhoneEmailldentifier(phoneNumber, emailAddress) values(phonein, emailin);

5 INSERT INTO Person(firstName, lastName, middleName, suffix, addressID, phoneEmaillD)

6 SELECT firstNamein, lastNamein, middlenamein, suffixin, Address.addressID, PhoneEmailldentifier.phoneEmaillD

7 FROM Address, PhoneEmailldentifier

8 WHERE Address.street = streetin

9 AND Address.city = cityin

1e AND Address.zip = zipIn

11 AND Address.state = statein

12 AND PhoneEmailIdentifier.phoneNumber = phonein

13 AND PhoneEmailldentifier.emailAddress = emailin

14 [JON DUPLICATE KEY UPDATE Person.addressid = (SELECT addressID FROM Address WHERE Address.street = streetin

15 AND Address.city = cityin

16 AND Address.zip = zipIn

17 [AND Address.state = statein);

18

19 ~END

20

Figure 2.4: An example of a routine that inserts information for a person

2.5 Project Plan

The plan for the project was to use a waterfall method of development. When the project was first
started, it was developed with intention of having three team members on the project and to develop it
using MySQL, ASP.NET, and to create a bootstrap. A WBS was created with this in mind and a plan
was set. This fell through at the beginning of the semester and the project was reduced to me as the
only developer. The language was changed to PHP, CSS, and MySQL.

Halfway through the semester, Cody McWilliams joined my project as a frontend developer and
JavaScript and jQuery was added to the languages. These changes made sticking with the project plan
10

CHAPTER 2: SYSTEM INTEGRATION AND MODELING

difficult and we were not able to keep up with the plan.

D WES Task Mame Feb 14, "1€ Feb 21,16 5 May 8, 15,71 May 22, "1 May 2¢
SITITIS MW FISIT 5 MW STTSMW
o 0 0CC DataEntrySystem
1 1 Design r T
& 2 2 Build Database e
7 21 2.1 Create Tables l_ll
3 22 2.2 Create Queries T PM (David Bretz)
24 3 3 Build Website r T
25 31 3.1 Build €55
26 3.2 3.2 Public |
3 33 3.3 Authenticated User ;‘
62 3.4 3.4 Administrator | |
76 4 4 Quality Assurance —
7 a1 4.1 Unit Testing Front End Developer (Cody McWilliams),PM (David Bretz)
75 a4z 4.2 Integration Testing B Front End Developer (Cody McWilliams),PM (David Bretz)
79 43 4.3 System Testing ¥ Front End Developer (Cody McWilliams),PM (David Bretz)
80 44 4.4 User acceptance Testin b Front End Developer (Cody McWilliams),PM (David Bretz)
8 s 5 User Manual L
82 51 5.1 Volunteer Manual PM (David Bretz)
8 52 5.2 Administrator Manual PM (David Bretz)

Figure 2.5: Project Gantt Chart

11

CHAPTER 3: DESIGN AND TESTING

Chapter 3
Design and Testing

3.1 User Interface

The user interface for the database will be the website. The website will provide a way for donors to
input their personal information as well as the number of shoeboxes they are donating if they are at a
Drop-Off Location. The website will automatically determine which Drop-Off Location or event
location the individual is at. It will not allow an unauthorized user from retrieving any information
from the database.

Authorized users will be able to do all that an unauthorized user can do. Additionally, they can add
information into the system manually in case there is a Drop-Off Location where there is no internet or
there was some other instance that forces them to use the old paper forms. These users will also be able
to view all personal and organizational information along with drop-off and event statistics. They will
also be able to edit information that they know was entered in error. Users with high enough privilege
will be allowed to create new user accounts for the system they will also be allowed to create and edit
Drop-Off Locations. There will be no way provided for a user to view an account’s password. An
account’s password is to never be displayed. The only interaction that a user will have with their
password will be when they enter it to log in or when their password is reset by an admin.

3.2 Design Tools

In order to develop the layout for the database, multiple interviews were performed with members of
the South Central Alaska Team. It was important that the database captured everything that they use

12

CHAPTER 3: DESIGN AND TESTING

and provide information that would be beneficial to their team. We also reviewed copies of their
current forms used for collecting donor information. (Deb Bronson, 2015-2016)

Most of the testing and development of the database will be through either command line or via the
MySQL Workbench. Workbench makes it easy to visualize how the tables relate with each other and
makes it easier to perform repeated tasks.

MySQL Workbench — a X
& MySQL Model (OCCManagement EE gram

Eile Edt View Arange Model Databas

xteilippiiyat 00

eferences:
(addressID) TO Address(addressID)
) Tt

o

{maiingID) TO Mailing{madingID)

Referenced By:
VolunteerTime (personD) TO (personiD)
DropOff (personiD) TO (personiD)

| @B B OO R

il sl =l sl

iy

Figure 3.1: MySQL Workbench EER Diagram

3.2 Database Testing

We did not officially pick a testing method for the project. We did test the database using a series of
unit tests. These tests were done mostly by hand with a few exceptions. At the beginning of the project,
I compiled a list of common entries that would need to be supported as well as what would need to be
prevented. As the project progressed and the database evolved, new tests were developed and in some
cases old tests needed to be checked.

Each table was tested on insert, update, and delete operations individually. This was done to make sure
that each table was capable of supporting the information that was to be stored. | then attempted to
enter invalid data into the tables to confirm that the database would reject the data.

13

14

CHAPTER 3: DESIGN AND TESTING

CHAPTER 4: USER MANUAL

Chapter 4
User Manual

4.1 Overview

The Operation Christmas Child Data Management System (OCCDMS) is a database system with a web
interface. This system will work on both mobile and desktop environments and will not require the user
to install any additional software. This system is designed to store all donor information for both
organizations and individuals. This will also be used to collect shoebox drop-off information straight
from donors.

Figure 4.1 Donors dropping off shoeboxes

15

CHAPTER 4: USER MANUAL

4.2 Donors

Once the website is deployed, donors will be able to visit the website. Once the donor arrives at the
home page, they will be greeted by a screen similar to figure 4.1. Once there, the donor will have three
options to choose from; Drop-Off, Event Check-In, and Short-Term Volunteers. It is recommended that
a direct link to one of the pertinent options is provided at the Drop-Off Location or event either in the
form of a QR code or text. The home page is provided as a general access point.

New Tab @ difference | x Operation - x \ §§ Agile soft a project ma: x | % OneTab
& (e : uaa-cse2. duckdns org nbretz, bk &3

o“‘“
O 2

s’”
% : Event Check-In Short-Term Volunteers

Event Check-In Short-Térm Volunteers

Figure 4.2: Home page for OCCDMS

If a donor is at a Drop-Off Location and they want to drop off a shoebox, they would visit the Drop-Off
link. When there, they will be provided the option to donate either anonymously, as an individual, or as
an organization. In order for a donor to fill out the form, the donor must be within 500 feet of a Drop-

Off Location. If they are not within 500 feet of a Drop-Off Location, they will be told to proceed to the

16

CHAPTER 4: USER MANUAL

nearest Drop-Off Location and be directed to a map of active Drop-Off Locations. In order to
determine whether the donor is within this range, OCCDMS must know the donor’s location. This
means that when the webpage requests the donor’s location, the donor must grant the website access to
their location. This is critical to knowing which Drop-Off location is receiving the shoeboxes as
location codes are handled automatically by OCCDMS. If the donor denies the website from viewing
their location, they will not be allowed to fill the Drop-Off Log. If a donor has concerns about
OCCDMS knowing their current location, assure them that their location is not being tracked
continuously and will only be used to determine which Drop-Off Location they are at.

1 ¥ D_ropAoff Loca;fon: Operation Christma:

[[uaa-cse2.duckdns.org/~dmbretz/dropoff.php

Event Check-In Short-Term Volunteers

Individual

Organization

Figure 4.3: Donors will be able to fill a Drop-Off Log either as an individual or an organization

17

CHAPTER 4: USER MANUAL

Event Check-In is handled in the same way as Drop-Off is. The only difference between Drop-Off and
Event Check-In is that it only handles individuals and does not direct users to a map of events in their
area. The user will still need to grant OCCDMS access to their location, as this is used to determine
which event they are attending.

Operation Christm

Short-Term Volunteers

Event Check-In

Submit

Figure 4.4: Event Check-In form

Short-Term Volunteers will be used for allowing volunteers to sign-up for short-term volunteer roles at
Drop-Off Locations. They will need to select a Drop-Off Location to work at, a date, and a time. When
they arrive at the Drop-Off Location, they will need to sign in, much like you would for a time clock.
At the end of their shift, they will then check out. This is important for the safety of volunteers at the
Drop-Off Locations.

18

CHAPTER 4: USER MANUAL

4.3 Connect VVolunteers

Connect Volunteers who have been given an account by their Regional Area Coordinator or Area
Coordinator will need to login to the OCCDMS by clicking on the login link at the top right of the
screen.

Once they are logged in, they will be greeted by the VVolunteer Hub. From here, they will be able to
view all donor information, look-up individual organizations, persons, project leaders, and pastors.
They will also be able to view Drop-Off statistics for their area or for individual Drop-Off Locations.

Volunteers with an account will be able enter Drop-Off Logs manually from here as well. This is
provided in case donors need to resort to paper forms for a particular reason or shoeboxes were donated
after hours and were not collected by a volunteer.

Connect Volunteers will be able to create events from here as well. When creating an event, the
volunteer will need to name the event, provide a description, a date and time, an image, and
geographical coordinates. The coordinates will be used by OCCDMS for checking users into the event.

Connect Volunteers with a rank of Regional Area Coordinator, Area Coordinator, or Network
Coordinator will be allowed to create Drop-Off Locations in much the same manner as an event. Drop-
Off Locations, however, only require a Location, an organization to associate the Drop-Off Location
with, and its geographical coordinates.

Connect Volunteers with a rank of Regional Area Coordinator or Area Coordinator will be able to
create new user accounts for volunteers under them.

19

CHAPTER 5: SUMMARY AND CONCLUSION

Chapter 5
Summary and Conclusion

5.1 Summary

The Operation Christmas Child Data Management System is still needs work, but the framework has
been set. The database is has been built and works and has been tested. All that is needed is for the user
interface to be completed.

The system has been shown to be capable of storing all of the data that is currently used by the Local
Area Team. It also reduces the number of duplicate entries with its use of concatenated keys.

20

CHAPTER 5: SUMMARY AND CONCLUSION

[S

Figure 5.1: A worker at the California Processing Center which also serves as a Drop-Off Location

OCCDMS will reduce the workload of Connect VVolunteers who enter donor information every year.
The goal of the project is to develop a system that displays a form based on the user’s location. The
system will need to know where the user is and display a form based on whether they are at a registered
event or a shoe box Drop-Off Location and reject them otherwise. It will also allow a Connect
Volunteer, known as a Connect Volunteer, to view this data and use it for future decisions. This
application can be modified for use by other organizations where there are multiple events and
locations that need to be managed.

21

REFERENCES

References

Bretz, D. (n.d.). Anchorage, Alaska, United States of America.

Deb Bronson, S. B. (2015-2016). (M. M. David Bretz, Interviewer)

Google.com. (2016, April). maps.google.com. Retrieved from google.com.

Samaritan's Purse. (2015). Collection Center Coordinator Ministry Handbook. Boone, North Carolina,

United States of America.
Samaritan's Purse. (2015, November 9). Drop-off Location: Behind the Scenes. Boone, North Carolina,

United States of America.

22

Appendix A

APPENDIX A

Management

.u]

T userName v ARCHAR(100)
T regionI D INT

L

2 userName ¥ ARCHAR{100)
“ regionID INT

¥ personID INT
 regionName VARCHAR(45)

> password VARCHAR(45)
1 > admin BOOL

7 startTime DATETIME
T userhiame VARCHAR{100)

T teamID INT
> ministryTeam VARCHAR(45)
> pasition VARCHAR(45)

1 personiD INT

& endTime DATETIME
@ lecation]D VARCHAR(E)

* teamID INT
0 area VARCHAR (45)
< regionID INT

DropOft Data

 dropOffID INT
< personID INT

Contact Layer

<> personID INT

¥ firstName VARCHAR(45)

' middleNam e VARCH

¥ suffix VARCHAR(45)
¥ phoneEm aillD INT
© addressID INT

< mailingID INT

' lastiame VARCHAR(45)

AR(45) 1.0

& phaneEm ailID INT
' phoneNumber VARCHAR(10)
¥ emailAddress VARCHAR(45)

< mailingID INT
¥ addressID INT
¥ POBox VARCHAR(30)

¥ personID INT

1 organizationID INT
> position TEXT (45)

¥ leaderID INT
¥ personiD INT
T LD INT

> addressID INT
' strest VARCHAR(45)
¥ city VARCHAR(40)
 Zip VARCHAR(S)

' state VARCHAR(2)

" startdate DATE
& enddate DATE

] > website ¥ ARCHAR (45)

DINT
7 officialNam e VARCHAR(31)
1 addressID INT

< mailingID INT

< phoneEm allD INT
“hours VARCHAR(45)

 church BOOLEAN

t
t

eventID INT
personiD INT

" eventID INT

U name VARCHAR(45)

2 deseription V ARCHAR{1000)
> date DATE

 stertTime TIME
“endTime TIME
@ organizationI D INT

“image BLOB
 coordinateld INT

¥ locationID VARCHAR(S)
¥ organizationI D INT
T teamID INT
< coardinateID INT

< organizationID INT

@ lacationID ¥ARCHAR(5)
 boxes INT

& time DATETIME

Figure A.0.1: Database Model

23

> coordinatelD INT
7 latitude VARCHAR({45)
7 lengitude VARCHAR(45)

APPENDIX B

Appendix B

https://github.com/Dwiddwid/OCCGeolocationBasedForms

-- MySQL Workbench Forward Engineering

SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;

SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,
FOREIGN_KEY_CHECKS=0;

SET @OLD_SQL_MODE=@@SQL_MODE,
SQL_MODE=TRADITIONAL,ALLOW_INVALID_DATES

CREATE SCHEMA IF NOT EXISTS "occ’ DEFAULT CHARACTER SET utf8 COLLATE
utf8 general_ci ;

USE “occ’ ;

24

CREATE TABLE IF NOT EXISTS “occ’. Address (
“addressID” INT UNSIGNED NOT NULL AUTO_INCREMENT COMMENT ",
“street” VARCHAR(45) NULL DEFAULT " COMMENT ",
“city” VARCHAR(40) NULL COMMENT ",
*zip' VARCHAR(5) NULL COMMENT ",
“state’ VARCHAR(2) NOT NULL COMMENT *,
UNIQUE INDEX “addressID_UNIQUE" (‘addressID” ASC) COMMENT ",

CREATE TABLE IF NOT EXISTS “occ’. PhoneEmailldentifier” (
“phoneEmaillD™ INT UNSIGNED NOT NULL AUTO_INCREMENT COMMENT ",
“phoneNumber” VARCHAR(10) NOT NULL COMMENT ",
“emailAddress” VARCHAR(45) NOT NULL COMMENT ",
PRIMARY KEY (‘phoneNumber’, ‘emailAddress’) COMMENT ",
UNIQUE INDEX “phoneEmaillD_UNIQUE" (‘phoneEmaillD” ASC) COMMENT ")
ENGINE = InnoDB,;

CREATE TABLE IF NOT EXISTS “occ'. Mailing™ (
‘mailingID” INT UNSIGNED NULL AUTO_INCREMENT COMMENT ",

25

APPENDIX B

“addressID” INT UNSIGNED NOT NULL DEFAULT 0 COMMENT ",
"POBox” VARCHAR(30) NOT NULL DEFAULT " COMMENT ",
PRIMARY KEY (‘addressID’, 'POBox) COMMENT ",
UNIQUE INDEX "AddressPOBoxID_UNIQUE" (‘mailingID” ASC) COMMENT ",
CONSTRAINT "mailing_address
FOREIGN KEY (‘addressID")
REFERENCES "occ'."Address™ ("addressID")
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB,;

CREATE TABLE IF NOT EXISTS “occ'. Organization™ (
“organizationID” INT UNSIGNED NOT NULL AUTO_INCREMENT COMMENT ",
“officialName” VARCHAR(31) NOT NULL COMMENT ",
“addressID™ INT UNSIGNED NOT NULL COMMENT ",
‘mailingID” INT UNSIGNED NULL DEFAULT 1 COMMENT ",
“phoneEmaillD” INT UNSIGNED NULL DEFAULT 1 COMMENT ",
“hours” VARCHAR(45) NULL DEFAULT " COMMENT ",
“website” VARCHAR(45) NULL DEFAULT " COMMENT ",
“church” TINYINT(1) NOT NULL DEFAULT 0 COMMENT ",
PRIMARY KEY (‘officialName’, "addressiD’) COMMENT ",
UNIQUE INDEX “churchID_UNIQUE" (‘organizationID™ ASC) COMMENT ",
INDEX “organization_addressFK_idx™ (‘addressID” ASC) COMMENT ",
INDEX “organization_phoneEmailFK _idx™ (‘phoneEmaillD” ASC) COMMENT ",

26

APPENDIX B

INDEX “organization_mailingFK_idx" ("mailinglD” ASC) COMMENT ",
CONSTRAINT “organization_addressFK"
FOREIGN KEY (‘addressID")
REFERENCES "occ’."Address™ ("addressID")
ON DELETE NO ACTION
ON UPDATE NO ACTION,
CONSTRAINT “organization_phoneEmailFK"
FOREIGN KEY (‘phoneEmaillD")
REFERENCES “occ’. PhoneEmailldentifier” (‘phoneEmaillD")
ON DELETE NO ACTION
ON UPDATE NO ACTION,
CONSTRAINT “organization_mailingFK"
FOREIGN KEY (‘mailingID)
REFERENCES “occ’."Mailing™ (‘addressID")
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS “occ'. Person” (

“personID” INT UNSIGNED NOT NULL AUTO_INCREMENT COMMENT ",

“firstName” VARCHAR(45) NOT NULL COMMENT ",

‘middleName” VARCHAR(45) NOT NULL DEFAULT " COMMENT ",
“lastName” VARCHAR(45) NOT NULL DEFAULT " COMMENT ",
“suffix’ VARCHAR(45) NOT NULL DEFAULT " COMMENT ",

27

APPENDIX B

APPENDIX B

“phoneEmaillD” INT UNSIGNED NOT NULL DEFAULT 1 COMMENT ",
“addressID” INT UNSIGNED NULL DEFAULT 1 COMMENT ",
‘mailingID” INT UNSIGNED NULL DEFAULT 1 COMMENT ",
PRIMARY KEY (‘firstName', ‘'middleName’, "lastName’, “suffix’, ‘phoneEmaillD’) COMMENT ",
INDEX “person_addressFK_idx" (‘addressID” ASC) COMMENT ",
UNIQUE INDEX “personiD_UNIQUE" ("personID™ ASC) COMMENT ",
INDEX “person_phoneEmailldentifierlD_idx™ (‘phoneEmaillD” ASC) COMMENT ",
INDEX “person_mailingFK _idx" ("mailingID” ASC) COMMENT ",
CONSTRAINT “person_addressFK"

FOREIGN KEY (‘addressID")

REFERENCES "occ’."Address™ ("addressID")

ON DELETE NO ACTION

ON UPDATE NO ACTION,
CONSTRAINT “person_phoneEmailldentifierID®

FOREIGN KEY (‘phoneEmaillD")

REFERENCES “occ’."PhoneEmailldentifier” (‘phoneEmaillD")

ON DELETE NO ACTION

ON UPDATE NO ACTION,
CONSTRAINT “person_mailingFK®

FOREIGN KEY (‘mailingID)

REFERENCES "occ'."Mailing™ ("mailinglD")

ON DELETE NO ACTION

ON UPDATE NO ACTION)

ENGINE = InnoDB;

-- Table “occ’."Pastor’

28

CREATE TABLE IF NOT EXISTS “occ'. Pastor (
“personID” INT UNSIGNED NOT NULL COMMENT ",
‘organizationID™ INT UNSIGNED NOT NULL COMMENT ",
“position” TEXT(45) NULL COMMENT ",
PRIMARY KEY (‘personlD’, “organizationID") COMMENT ",
INDEX “personID_idx™ (‘personID” ASC) COMMENT ",
INDEX “pastor_organizationFK_idx" (‘organizationID” ASC) COMMENT ",
CONSTRAINT “pastor_personFK®
FOREIGN KEY (‘personiD)
REFERENCES "occ'. Person” (‘personiD’)
ON DELETE NO ACTION
ON UPDATE NO ACTION,
CONSTRAINT “pastor_organizationFK"
FOREIGN KEY (‘organizationID")
REFERENCES “occ’. Organization™ (‘organizationlD")
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB,;

CREATE TABLE IF NOT EXISTS “occ’. ProjectLeader” (
“leaderID” INT UNSIGNED NOT NULL AUTO_INCREMENT COMMENT ",
“personID” INT UNSIGNED NOT NULL COMMENT ",
“orgainzationID” INT UNSIGNED NOT NULL COMMENT ",

29

APPENDIX B

“startdate” DATE NOT NULL COMMENT ",

‘enddate’ DATE NULL COMMENT ",

INDEX “personFK_idx" ("personID” ASC) COMMENT ",

INDEX “organizationFK_idx" (‘orgainzationID” ASC) COMMENT ",

PRIMARY KEY (‘personlD’, "orgainzationID", “startdate’) COMMENT ",

UNIQUE INDEX ‘leaderID_UNIQUE" (‘leaderlD* ASC) COMMENT ",
CONSTRAINT “project_personFK"
FOREIGN KEY ("personiD")
REFERENCES “occ. Person” ("personiD")
ON DELETE NO ACTION
ON UPDATE NO ACTION,
CONSTRAINT “organizationFK"
FOREIGN KEY ("orgainzationiD")
REFERENCES “occ’. Organization™ (‘organizationID")
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS “occ’. 'Region™ (

‘regionID” INT UNSIGNED NOT NULL AUTO_INCREMENT COMMENT ",

‘regionName” VARCHAR(45) NOT NULL COMMENT ",
UNIQUE INDEX ‘regionID_UNIQUE" (‘regionID” ASC) COMMENT ",
PRIMARY KEY (‘regionName’) COMMENT ")

ENGINE = InnoDB,;

30

APPENDIX B

CREATE TABLE IF NOT EXISTS “occ’. Team™ (
‘teamID” INT UNSIGNED NOT NULL AUTO_INCREMENT COMMENT ",
‘area’ VARCHAR(45) NOT NULL COMMENT ",
“regionID” INT UNSIGNED NULL COMMENT ",
PRIMARY KEY (‘teamID’) COMMENT ",
INDEX “team_regionFK _idx" (‘regionID” ASC) COMMENT ",
CONSTRAINT “team_regionFK"
FOREIGN KEY (‘regionID")
REFERENCES “occ’. Region” (‘regionlD")
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS “occ’. Coordinate” (
“coordinatelD” INT UNSIGNED NOT NULL AUTO_INCREMENT COMMENT ",
“latitude” VARCHAR(45) NOT NULL COMMENT ",
“longitude” VARCHAR(45) NOT NULL COMMENT ",
UNIQUE INDEX ‘coordinatesID_UNIQUE" (‘coordinatelD” ASC) COMMENT ",
PRIMARY KEY ('latitude’, "longitude’) COMMENT ")

31

APPENDIX B

APPENDIX B

ENGINE = InnoDB,;

CREATE TABLE IF NOT EXISTS “occ’. DropOffLocation™ (
“locationD” VARCHAR(6) NOT NULL COMMENT ",
“organizationID” INT UNSIGNED NOT NULL COMMENT ",
‘teamID” INT UNSIGNED NOT NULL COMMENT ",
“coordinatelD” INT UNSIGNED NULL COMMENT ",
PRIMARY KEY (‘teamID", "organizationID", “locationID") COMMENT ",
UNIQUE INDEX "locationID_UNIQUE" ("locationID” ASC) COMMENT ",
INDEX “dropOffLocation_coordinateFK_idx™ (‘coordinateID™ ASC) COMMENT ",
CONSTRAINT “dropOffLocation_organizationFK*
FOREIGN KEY (‘organizationID")
REFERENCES “occ’. Organization™ (‘organizationID")
ON DELETE NO ACTION
ON UPDATE NO ACTION,
CONSTRAINT “dropOffLocation_teamFK"
FOREIGN KEY (‘teamiD")
REFERENCES "occ’. ' Team™ (‘teamID")
ON DELETE NO ACTION
ON UPDATE NO ACTION,
CONSTRAINT “dropOffLocation_coordinateFK"
FOREIGN KEY ("coordinatelD")
REFERENCES "occ'. Coordinate™ ("coordinatelD")
ON DELETE NO ACTION

32

APPENDIX B

ON UPDATE NO ACTION)
ENGINE = InnoDB;

-- Table “occ’. DropOff*

CREATE TABLE IF NOT EXISTS “occ’. DropOff” (
“dropOffID” INT UNSIGNED NOT NULL COMMENT ",
“personID” INT UNSIGNED NULL DEFAULT 1 COMMENT ",
“organizationID” INT UNSIGNED NULL DEFAULT 1 COMMENT ",
“locationlD” VARCHAR(6) NOT NULL COMMENT ",
"boxes” INT NOT NULL COMMENT ",
“time” DATETIME NOT NULL COMMENT ",
PRIMARY KEY (‘dropOffiID’) COMMENT ",
INDEX “personID_idx" ("personID™ ASC) COMMENT ",
INDEX "dropOff_locationFK_idx1" (‘organizationID” ASC) COMMENT ",
INDEX "dropOff_locationFK_idx™ ("locationID™ ASC) COMMENT ",
CONSTRAINT “dropOff_personFK"
FOREIGN KEY (‘personID")
REFERENCES "occ'. Person” ("personiD’)
ON DELETE NO ACTION
ON UPDATE NO ACTION,
CONSTRAINT “dropOff_locationFK"
FOREIGN KEY (locationID")
REFERENCES "occ’. DropOffLocation” ("locationID")
ON DELETE NO ACTION
ON UPDATE NO ACTION,

33

APPENDIX B

CONSTRAINT “dropOff_organizationFK"
FOREIGN KEY (‘organizationiD")
REFERENCES "occ’. Organization™ (‘organizationID")
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS “occ'. Volunteer (
‘userName” VARCHAR(100) NOT NULL COMMENT ",
“personID” INT UNSIGNED NOT NULL COMMENT ",
“password” VARCHAR(45) NOT NULL COMMENT ",
‘admin” TINYINT(1) NULL DEFAULT 0 COMMENT ",
PRIMARY KEY (‘personiD’) COMMENT ",
INDEX “personID_idx" (‘personiD™ ASC) COMMENT ",
UNIQUE INDEX “personiD_UNIQUE" ("personID” ASC) COMMENT ",
UNIQUE INDEX “userName_UNIQUE" (‘'userName™ ASC) COMMENT ",
CONSTRAINT “personID
FOREIGN KEY (‘personiD)
REFERENCES “occ. Person” ("personiD")
ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;

34

APPENDIX B

CREATE TABLE IF NOT EXISTS “occ’."VolunteerTime™ (
“startTime” DATETIME NOT NULL COMMENT ",
“personID” INT UNSIGNED NOT NULL COMMENT ",
‘endTime” DATETIME NOT NULL COMMENT ",
“locationD” VARCHAR(6) NOT NULL COMMENT ",
PRIMARY KEY (‘personID’, “startTime’) COMMENT ",
INDEX “volunteerTime_locationFK _idx™ (‘locationID™ ASC) COMMENT ",
CONSTRAINT “volunteerTime_locationFK"

FOREIGN KEY ('locationID")
REFERENCES "occ'. DropOffLocation” ("locationID")
ON DELETE NO ACTION
ON UPDATE NO ACTION,
CONSTRAINT ‘volunteerTime_personFK®

FOREIGN KEY (‘personiD")
REFERENCES “occ. Person” ("personiD")
ON DELETE NO ACTION
ON UPDATE NO ACTION)

ENGINE = InnoDB,;

CREATE TABLE IF NOT EXISTS “occ'. Event™ (
“eventID” INT UNSIGNED NOT NULL AUTO_INCREMENT COMMENT ",

35

APPENDIX B

‘eventName” VARCHAR(45) NOT NULL COMMENT ",
“description” VARCHAR(1000) NULL COMMENT ",
“date” DATE NOT NULL COMMENT *,
“startTime™ TIME NOT NULL COMMENT ",
‘endTime” TIME NOT NULL COMMENT ",
“organizationID™ INT UNSIGNED NOT NULL COMMENT ",
‘image” BLOB NULL COMMENT ",
“coordinatelD” INT UNSIGNED NULL COMMENT ",
PRIMARY KEY (‘eventlID) COMMENT ",
INDEX “event_organizationFK _idx™ (‘organizationID” ASC) COMMENT ",
INDEX “event_coordinateFK _idx" (‘coordinatelD™ ASC) COMMENT ",
CONSTRAINT “event_organizationFK"

FOREIGN KEY (‘organizationiD")

REFERENCES “occ’. Organization™ (‘organizationlD")

ON DELETE NO ACTION

ON UPDATE NO ACTION,
CONSTRAINT “event_coordinateFK®

FOREIGN KEY (‘coordinatelD")

REFERENCES "occ'. Coordinate™ ("coordinatelD")

ON DELETE NO ACTION

ON UPDATE NO ACTION)

ENGINE = InnoDB,;

CREATE TABLE IF NOT EXISTS “occ’. EventAttendee” (

36

‘eventID” INT UNSIGNED NOT NULL COMMENT ",
“personID” INT UNSIGNED NOT NULL COMMENT ",
PRIMARY KEY (‘eventlD", "personiD’) COMMENT ",
INDEX “eventAttendee_personFK _idx (‘personID” ASC) COMMENT ",
CONSTRAINT “event_eventAttendeeFK"

FOREIGN KEY (‘eventID")

REFERENCES "occ’. Event” (‘eventID")

ON DELETE NO ACTION

ON UPDATE NO ACTION,
CONSTRAINT “eventAttendee_personFK®

FOREIGN KEY (‘personiD)

REFERENCES "occ'. Person” ("personiD’)

ON DELETE NO ACTION

ON UPDATE NO ACTION)

ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS “occ’." TeamMember (
‘userName” VARCHAR(100) NOT NULL COMMENT ",
‘teamID” INT UNSIGNED NOT NULL COMMENT ",
‘ministryTeam” VARCHAR(45) NOT NULL COMMENT ",
“position” VARCHAR(45) NOT NULL COMMENT ",
PRIMARY KEY (‘userName’, ‘teamID’) COMMENT ",
INDEX “volunteerTeam_team_idx (‘teamID” ASC) COMMENT ",
CONSTRAINT “teamMember_volunteer’

37

APPENDIX B

APPENDIX B

FOREIGN KEY (‘userName")
REFERENCES "occ'. Volunteer™ (‘userName")
ON DELETE NO ACTION
ON UPDATE NO ACTION,
CONSTRAINT ‘teamMember_team’

FOREIGN KEY (‘teamID")
REFERENCES "occ’."Team’ (‘teamID")
ON DELETE NO ACTION
ON UPDATE NO ACTION)

ENGINE = InnoDB,;

CREATE TABLE IF NOT EXISTS “occ'. Regional AreaCoordinator™ (
“userName™ VARCHAR(100) NOT NULL COMMENT ",
“regionID” INT UNSIGNED NOT NULL COMMENT ",
PRIMARY KEY (‘userName’, ‘regionID’) COMMENT ",
INDEX ‘regionalAreaCoordinator_region_idx" (‘regionID” ASC) COMMENT ",
CONSTRAINT “regionalAreaCoordinator_volunteer
FOREIGN KEY (‘userName")
REFERENCES “occ’."Volunteer™ (‘userName®)
ON DELETE NO ACTION
ON UPDATE NO ACTION,
CONSTRAINT “regionalAreaCoordinator_region®
FOREIGN KEY (‘regionID")
REFERENCES “occ'.'Region” (‘regionlD")

38

APPENDIX B

ON DELETE NO ACTION
ON UPDATE NO ACTION)
ENGINE = InnoDB;

USE “occ’ ;

CREATE TABLE IF NOT EXISTS “occ’.'PersonData” ("lastName™ INT, “firstName™ INT,
‘middleName’ INT, “suffix” INT, “street” INT, “city’ INT, “zip" INT, ‘state’ INT, ‘phoneNumber™ INT,
“emailAddress’ INT);

CREATE TABLE IF NOT EXISTS “occ'. OrganizationData™ ("officialName™ INT, “street” INT, “city’
INT, “zip™ INT, “state” INT, ‘phoneNumber™ INT, "emailAddress™ INT, “hours™ INT, “website™ INT);

CREATE TABLE IF NOT EXISTS “occ’.'EventData™ ("eventID" INT, "eventName™ INT, “description’
INT, "date” INT, “startTime™ INT, "endTime INT, “image” INT, latitude” INT, “longitude™ INT,
“officialName™ INT, “street” INT, “city” INT, “zip" INT, ‘state” INT);

39

APPENDIX B

DELIMITER $%
USE “occ'$$

CREATE PROCEDURE "insertperson (IN firstNamein varchar(45), IN middlenamein varchar(45), IN
lastNamein varchar(45), IN suffixin varchar(45), IN streetin varchar(45), IN cityin varchar(40), IN
zipIn varchar(5), IN statein varchar(2), IN phonein varchar(10), IN emailin varchar(45))

BEGIN
INSERT IGNORE INTO Address(street, city, zip, state) VALUES(streetin, cityin, zipin, statein);

INSERT IGNORE INTO PhoneEmailldentifier(phoneNumber, emailAddress) values(phonein,
emailin);

INSERT INTO Person(firstName, lastName, middleName, suffix, addressID, phoneEmaillD)

SELECT firstNamein, lastNamein, middlenamein, suffixin, Address.addressID,
PhoneEmailldentifier.phoneEmaillD

FROM Address, PhoneEmailldentifier

WHERE Address.street = streetin

AND Address.city = cityin

AND Address.zip = zipIn

AND Address.state = statein

AND PhoneEmailldentifier.phoneNumber = phonein
AND PhoneEmailldentifier.email Address = emailin

ON DUPLICATE KEY UPDATE Person.addressid = (SELECT addressID FROM Address WHERE
Address.street = streetin

AND Address.city = cityin
AND Address.zip = zipln
AND Address.state = statein);

END
$$

DELIMITER ;

40

APPENDIX B

DELIMITER $$
USE ‘occ'$$

CREATE PROCEDURE "insertAttendee (IN firstNamein varchar(45), IN middlenamein varchar(45),
IN lastNamein varchar(45), IN suffixin varchar(45), IN streetin varchar(45), IN cityin varchar(40), IN
zipin varchar(5), IN statein varchar(2), IN phonein varchar(10), IN emailin varchar(45), IN eventin
INT)

BEGIN
INSERT IGNORE INTO Address(street, city, zip, state) VALUES(streetin, cityin, zipin, statein);

INSERT IGNORE INTO PhoneEmailldentifier(phoneNumber, email Address) values(phonein,
emailin);

INSERT INTO Person(firstName, lastName, middleName, suffix, addressiD, phoneEmaillD)

SELECT firstNamein, lastNamein, middlenamein, suffixin, Address.addressID,
PhoneEmailldentifier.phoneEmaillD

FROM Address, PhoneEmailldentifier

WHERE Address.street = streetin

AND Address.city = cityin

AND Address.zip = zipin

AND Address.state = statein

AND PhoneEmailldentifier.phoneNumber = phonein
AND PhoneEmailldentifier.email Address = emailin

ON DUPLICATE KEY UPDATE Person.addressid = (SELECT addressID FROM Address WHERE
Address.street = streetin

AND Address.city = cityin

AND Address.zip = zipIn

AND Address.state = statein);

INSERT INTO EventAttendee(eventID, personlD) SELECT eventin, Person.personiD

41

APPENDIX B

FROM Event, Person WHERE Person.firstName = firstNamein
AND Person.lastName = lastNamein

AND Person.middleName = middlenamein

AND Person.suffix = suffixin

AND Person.phoneEmaillD = (SELECT phoneEmaillD FROM PhoneEmailldentifier WHERE
PhoneEmailldentifier.phoneNumber = phonein AND PhoneEmailldentifier.email Address = emailin);

END
$$

DELIMITER ;

DELIMITER $$

USE “occ'$$

CREATE PROCEDURE "createAccount ()
BEGIN

END
$$

DELIMITER ;

-- View “occ . PersonData”
42

APPENDIX B

DROP TABLE IF EXISTS “occ’. PersonData’;
USE “occ’;
CREATE OR REPLACE VIEW "PersonData” AS
SELECT
Person.lastName,
Person.firstName,
Person.middleName,
Person.suffix,
Address.street,
Address.city,
Address.zip,
Address.state,
PhoneEmailldentifier.phoneNumber,
PhoneEmailldentifier.email Address
FROM
Person
LEFT JOIN
Address ON (Person.addressID = Address.addressID)
LEFT JOIN
PhoneEmailldentifier ON (Person.phoneEmaillD = PhoneEmailldentifier.phoneEmaillD);

DROP TABLE IF EXISTS “occ’. OrganizationData ;
USE “occ’;
CREATE OR REPLACE VIEW OrganizationData™ AS

43

APPENDIX B

SELECT
Organization.officialName,
Address.street,
Address.city,
Address.zip,
Address.state,
PhoneEmailldentifier.phoneNumber,
PhoneEmailldentifier.email Address,
Organization.hours,
Organization.website
FROM
Organization
LEFT JOIN
Address ON (Address.addressID = Organization.addressID)
LEFT JOIN
PhoneEmailldentifier ON (PhoneEmailldentifier.phoneEmailID = Organization.phoneEmailID)

DROP TABLE IF EXISTS “occ'. EventData ;
USE “occ’;
CREATE OR REPLACE VIEW 'EventData’ AS
SELECT
Event.eventlD,
Event.eventName,

Event.description,

44

Event.date,
Event.startTime,
Event.endTime,
Event.image,
Coordinate.latitude,

Coordinate.longitude,

Organization.officialName,

Address.street,

Address.city,

Address.zip,

Address.state
FROM

Event

LEFT JOIN

Coordinate ON (Event.coordinatelD = Coordinate.coordinatel D)

LEFT JOIN

Organization ON (Event.organizationID = Organization.organizationID)

LEFT JOIN

Address ON (Organization.addressID = Address.addressID);

USE “occ’;

DELIMITER $$
USE “occ'$$

APPENDIX B

CREATE DEFINER = CURRENT_USER TRIGGER "occ’."Address_ BEFORE_INSERT BEFORE

INSERT ON "Address FOR EACH ROW

BEGIN

if new.street =" then
signal sqlstate '45000';
ELSEIF new.city =" then

45

APPENDIX B

signal sqlstate '45000';
ELSEIF new.zip = " then
signal sqlstate '45000';
ELSEIF new.state = " then
signal sqlstate '45000';
end if;

END

$$

USE “occ'$$

CREATE DEFINER = CURRENT_USER TRIGGER
“occ . 'PhoneEmailldentifier BEFORE_INSERT BEFORE INSERT ON "PhoneEmailldentifier' FOR
EACH ROW

BEGIN

if new.phoneNumber =" AND new.emailAddress =" then
signal sqlstate '45000';

end if;

END

$$

USE “occ'$$

CREATE DEFINER = CURRENT_USER TRIGGER “occ’."Mailing_ BEFORE_INSERT" BEFORE
INSERT ON "Mailing" FOR EACH ROW

BEGIN

if new.addressID =1 AND new.POBox =" then
signal sqlstate '45000';

end if;

END

$$

46

USE “occ'$$

CREATE DEFINER = CURRENT_USER TRIGGER "occ
BEFORE INSERT ON "Organization" FOR EACH ROW

BEGIN

if new.officialName =" then
signal sqlstate '45000';

end if;

END

$$

USE “occ'$$

CREATE DEFINER = CURRENT_USER TRIGGER "occ
INSERT ON "Person” FOR EACH ROW

BEGIN

if new.firstName =" then
signal sqlstate '45000';

ELSEIF new.lastName = " then
signal sqlstate '45000';

end if;

END

$$

USE “occ'$$

CREATE DEFINER = CURRENT_USER TRIGGER "occ
BEFORE INSERT ON "Coordinate FOR EACH ROW

BEGIN
if new.latitude =" then

signal sqlstate ‘45000,

47

APPENDIX B

"."Organization_BEFORE_INSERT"

"."Person_BEFORE_INSERT BEFORE

"."Coordinate_ BEFORE_INSERT"

APPENDIX B

ELSEIF new.longitude = " then
signal sqlstate '45000';

END IF;

END

$$

USE ‘occ'$$

CREATE DEFINER = CURRENT_USER TRIGGER “occ’."Volunteer BEFORE_INSERT BEFORE
INSERT ON "Volunteer' FOR EACH ROW

BEGIN

if new.userName =" then
signal sqlstate '45000';

ELSEIF new.password = " then
signal sqlstate '45000';

end if;

END

$$

DELIMITER ;
SET SQL_MODE=@OLD_SQL_MODE;

SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_ CHECKS;
SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;

48

