
UNIVERSITY OF ALASKA ANCHORAGE

CSCE A470

CAPSTONE PROJECT

Arduino GPS Logging Midterm Report

Author:

Kenneth Mendenhall

Supervisor:

Prof Adriano Cavalcanti, PhD

Anchorage AK, April 2016

2

© Copyright 2016

by

Kenneth Mendenhall

kcmendenhallii@alaska.edu

3

Abstract

In recent years the rise in power of microcontrollers, both in speed and memory capacity, has

served to drive the “Do-It-Yourself” (DIY) electronics movement, sparking a generation of

amateur hobbyists and inventors the means to make household projects to better their lives and

further their knowledge of digital systems. Further, this rise in demand for higher performance

micro systems along with the shields, peripheral devices, to accompany them has also spurred

the evolution of devices like the Raspberry Pi and Intel Edison into systems that can compete

with low end desktop systems, but at a much cheaper cost. Additionally, the DIY surge can serve

as an educational tool to enlighten future generations of potential coders and computer systems

engineers at an earlier age, and has prompted the formation of several home-town maker

organizations to facilitate awareness and education in the digital age.

4

Acknowledgements

I would like to show my utmost gratitude for my mom, Leslie Mendenhall, and my dad, Ken

Mendenhall, who both encouraged me all throughout my formative years to learn and study as

much as possible and who were critical of my work early on. I would also like to extend my

gratitude to the Computer Science faculty and staff who gave me the tools necessary to make this

project a reality.

 Firstly, I would like to acknowledge my supervisor for the Capstone project, Professor

Adriano Cavalcanti, PhD. whose patience and mentorship guided the development of my

research project. Secondly, I would like to acknowledge Prof. Frank Moore, PhD. who instructed

my first computer science courses and who laid the foundation for the rest of my education at the

University of Alaska Anchorage.

5

Contents
Cover Page ... 1

Abstract .. 3

Acknowledgements ... 4

Table of Contents .. 5

Table List ... 6

Figure List.. 7

Chapter 1 ... 8

Chapter 2 ... 12

Chapter 3 ... 18

Chapter 4 ... 21

Chapter 5 ... 24

 Appendix A .. 27

Appendix B .. 28

References .. 39

6

Table List:

Table 1.1 Describes the flow of data through the program as a function of inputs for the service

live of each object throughout the life of the programs execution ... 11

Table 2.1 Shows the projected timeline for task completion, modified to meed the existing

demands of a compressed schedule .. 17

7

Figure List

Figure 1.1 shows the Intel Edison with development breakout oard...9

Figure 1.2 shows the Xbee module that will facilitate the data link between the Java applcation

and the remote Edison device .. 9

Figure 1.3 Shows the GP-17340 unit that will be utilized, as sized relative to a quarter..............10

Figure 1.5 Is an image of the GPS network that has been created to facilitate navigation............10

Figure 2.1 Is the logo for the software environment used to configure the XBee radios.

Developed by Digi, International...12

Figure 2.2 Shows some of the configurations that can be specified in the firmware for the XBee

Pro inside the XCTU interface...12

Figure 2.3 Is the iconic symbol for the concept of the"Internet-Of-Things".................................13

Figure 2.4 Examples GPS Data being fed from a reciever using standard NMEA Strings...........14

Figure 3.1 Shows a preliminary design for the GUI using a simplistic button set for the

interface..18

Figure 3.2 Shows a minimal segment of .kml code, suffecient enough to drop a placemark on a

map, as prescribed by Google API..19

Figure 5.1 Shows two XBee Radios and a 9 Axis-IMU, all future expansions to the GPS Logging

program..25

8

Chapter 1

Introduction

1.1 Introduction

The implementation of a program to record the latitude and longitude positions from a GPS

device by using open source tools (NMEA Parsing Library, Xbee Interface, Intel Edison Toolkit,

etc) is a relatively inexpensive project for such broad reaching application. The utilization of a

microprocessor with breakout board allows end users and DIY hobbyists to expand on the given

system to meet the needs of whatever project they are working on. This enables users to recive

real time positioning, course, speed, and even altitude data and recorde this information. The

motivation for using the Intel Edison system and making a program totally from scratch as

opposed to using existing API’s for Apple or Android stems from the desire to leave the project

open-ended for future expansion.

9

Figure 1.1 shows the Intel Edison with development breakout board

1.2 Application

The Arduino GPS Logging project is composed of a Java application running on a PC and

interfacing a Intel Edison processor equipped with a GPS-13740, linked via 2 Xbee radios, to

allow the device to be dislocated from the user if need be. The Java application establishes a

serial communication with the PC side Xbee using open source API supplied by Digi, while also

handling the writing of incoming data to a .kml file. The Edison side of the project has a

corresponding Xbee that has been configured to the same network as the other, and is used to

receive commands and transmit position data back to the user. The Edison supplies position data

using open source API supplied by the National Marine Electronics Association, to parse

incoming GPS strings and extracting pectinate data, packaging it into messages and then sending

it off to the Xbee for transmission.

Figure 1.2 Shows the Xbee Radio module that will facilitate the data link between the Java

application and the remote Edison device

1.3 Motivation

The intent of this project is to assist DIY/amateur hobbyists by providing an open source set of

instructions on how configure a GPS tracking program for any desired application. As previously

10

stated, the relatively low budget required to get this project off the ground is sufficient for most

newcomers who want to experiment with hardware, as opposed to being limited by software.

Figure 1.3 Shows the GP-17340 unit that will be utilized, as sized relative to a quarter

Further, Edison can be configured to use the Arduino IDE which implements a form of the C

programming language and is a great tool to teach others who are new to programming. This

simple design philosophy comes full circle with the Arduino GPS Logging program which

Additionally, working across multiple systems presents a new challenge, along with

familiarizing myself with Keyhole Markup Language, which is used by Google Earth to log

Geographic data. With Intel Edison breakout board the possibilities for future projects is endless.

1.4 Recent Developments

Right now the Java side code is being integrated with the Edison side C code for passing of GPS

data. There is a Bitbucket account for hosting developments on the project as well as source code

Figure 1.4 Is an image of the GPS network that has been created to facilitate navigation

11

GPSLogger_Fr
ontEnd

XBee_Interface:
myRadio

GPSReciever
KML_Interface:

kmlWriter

main()

event.getObject.equals(connectButton)

new XBee_Interface()

myRadio.sendBroadcastData(0);

Serial.write(0)

event.getObject.equals(startButton)

myRadio.beginTransmit()

myRadio.sendBroadcastData(1)

Serial.write(1)

Serial.write(data);

event.dataAvailable(data)

Serial.write(1)

Serial.write(data);

event.dataAvailable(data)

event.getObject.equals(endButton)

myRadio.endTransmit()

myRadio.sendBroadcastData(2)

Serial.write(2)

event.dataAvaliable(2)

event.dataAvailable(0)

event.dataAvailable(1)

new KML_Handler()

kmlWriter.writeCoordinatesToFile(data)

kmlWriter.writeCoordinatesToFile(data)

event.dataAvaliable(1)

kml.close()

event.getObject.equals(disconnectButton)

myRadio.close()

System.exit(0)

Table 1.1 Describes the flow of data through the program as a function of inputs for the service

live of each object throughout the life of the programs execution

12

Chapter 2

Implementation and Design

2.1 Introduction

Integration of the systems in the Arduino GPS Logging program will be aided by various open

source drivers and libraries. Such libraries will facilitate wireless data exchange, serial

communication, parsing and writing data to .kml files, as well as reading GPS data. All of the

provided data was acquired from various websites on the internet.

Figure 2.1 Is the logo for the software environment used to configure the XBee radios.

Developed by Digi, International

The Java program itself has been compiled and tested on Netbeans 8.0.2, while the Arduino code

was weitten on the Arduino IDE 1.6.6 and deployed on the Intel Edison board running the

FlashEdison JSON Image.

13

Table 2.2 Shows some of the configurations that can be specified in the firmware for the XBee

Pro inside the XCTU interface

The supplied library functionalities include:

- Manipulation of data, to and from the .kml files, assisted by the Jsoup library for

Java.

- Interfacing with the Serial data ports on the computer, supplemented by the rxtx-

2.2.jar file

- Driver for the Xbee radios for wireless communication, provided by the xbjlib-1.1.0

library provided by Digi.

- Parsing of data being interpreted by the GPS receiver is handled by nemalib provided

by the National Marine Electronics Association (NMEA)

All of the afore mentioned libraries fall under GNU or MIT open source licensure and are

acknowledged in the software as applicable.

Figure 2.3 Is the iconic symbol for the concept of the "Internet-Of-Things"

14

2.2 Application

Once the required libraries are imported to Netbeans the application is ready to be tested. This

involves making a simple GUI for the front end with a button only interface for user interaction.

The buttons for interaction thus far are:

- Connect: preforms a sequence of actions to initialize an Xbee object and connect to

the Edison end system.

- Start: initiates a command to the Edison to tell the device that the host is ready for

receipt of GPS data.

- End: initiates a command to the Edison to tell the device that the host is no longer

needing GPS data.

- Disconnect: Terminates the connection with the Xbee radios and saves the supplied

data to the .kml file and closes the file connection.

This can be simplified by further abstraction in future applications by automatically preforming

the connect and disconnect functions, requiring the user to only initiate the point at which the

program needs to start/stop logging coordinates.

Once the connection has been established the user is ready to request data from the GPS. These

are supplied by simple byte of data that tells the Edison when the host is ready for receipt.

Figure 2.4 Examples GPS Data being fed from a receiver using standard NMEA Strings

15

Example string:

$GPRMC,081836,A,3751.65,S,14507.36,E,000.0,360.0,130998,011.3,E*62

The data being provided by the GP-13740 receiver will be in a $GPRMC format (One of several

supplied formats specified by NMEA). These strings include:

- $GPRMC is the header for the type of data to follow

- Time of the GPS fix (UTC).

- Receiver error byte in the form of the characters A (Success) or V (Receiver Failure).

- Latitude (N/S) and Longitude (E/W) data, in degree decimal format.

- Computed speed over the ground in various units (for this project m/s will be used).

- Degrees will be the computed course relative to True North. Following the course

data will be the

- Date of the fix

- Magnetic variation data (E/W).

- Mandatory checksum bit ensures data integrity.

GPS strings are parsed using the NMEA supplied methods:

- gps.gprmc_latitude();

- gps.gprmc_longitude();

- gps.gprmc_course();

- gps.gprmc_speed(MPS);

Note: The parameter MPS specifies Meters Per Second for computation by the NMEA library

Once parsed, the strings are sent back to the host via the Xbee radios and encoded into the .kml

files for users to glance at later via Google Earth,

2.3 Motivation

As previously stated the intent of this project is to explore the use of microcontrollers and

integrating them with software projects and sharing a common passion for DIY development of

electronic systems over the internet for others to learn from.

16

2.4 Recent Developments

Right now the Java side code is being integrated with the Edison side C code for passing of GPS

data. There is a Bitbucket account for housing developments on the project as well as source

code.

2.5 Agile as a Coding Methodology

Agile describes a means to go about planning and executing coding projects. These projects best

implemented through Agile if they are smaller in scope and can be flexible in their requirements.

Agile necessitates smaller functional teams of coders, working together, and taking on distinct

roles within the group. This method to coding is also effective when team leadership can

regularly meet with the clients, who are needing the final product. Typically, the clients and team

leadership wil initially meet and negotiate on the scale and scope of the product, as well as

establish timelines and requirements for each iteration, until completion.

From a coding perspective, the Agile methodology is effectient because it does not demand up

from costs, such as verbose documentation, that may have to be changed if the scope of the

project changes. Further, Agile fosters a sleek, effecient approach to coding by making teams

adaptable to hardships, i.e. teammates dropping out mid stride, and by promoting workload

management for the team through burndown charts.

17

ID Task Name Start Finish Duration
Mar 2016 Apr 2016

130 223 12 1610 212011 154 2315 29 1711 2718 1312 258 21 2 19 241817 25 23852165 31 413 39 6 192416 9720 28147 2614 28 2610 22 27

1 Chapter 18d04/08/1603/30/16Chapter 1

2 GPSLogger_Interface10d04/12/1603/30/16GPSLogger_Interface

3 Chapter 28d04/08/1603/30/16Chapter 2

4 Xbee_Interface10d04/12/1603/30/16Xbee_Interface

5 Chapter 38d04/08/1603/30/16Chapter 3

6 XML_Interface10d04/12/1603/30/16XML_Interface

7 Chapter 48.5d04/11/1603/30/16Chapter 4

8 Ardino Implementation10d04/12/1603/30/16Ardino Implementation

9 Chapter 58.5d04/11/1603/30/16Chapter 5

10 System Integration10.5d04/13/1603/30/16System Integration

Table 2.1 Shows the projected timeline for task completion.

18

Chapter 3

Interface Design Methodology

3.1 Introduction

Development of the user interface is inspired by simplicity of design and functionality for the

end user. As described in Chapter 2, the graphic user interface for the Arduino GPS Logging

program consists of for buttons: connect, start, end, disconnect. These provide the key functions

tot he back end sub systems when actuated.

Figure 3.1 Shows a preliminary design for the GUI using a simplistic button set for the interface

19

3.2 Application

At the start of the program the only button enabled is the connect button. This prevents users

from actuating other controls out of sequence and makes testing easier and implementation more

predictable. Once the connect button is clicked, an event is fired off on the back end and caught

inside the GPSLogger_FrontEnd (the GUI). The method associated with the connect button

initializes the Xbee radio as an object and initiates a handshake to the Intel Edison system. This

turns on the GPS and allows it to warm up (could take several seconds). Once a signal is

acquired a reply is sent back to the FrontEnd and the Start button becomes enabled. Again, this

makes testing easier and prevents the user from taking inappropriate or illogical actions.

With the start button enabled, the user can then command the Edison to start transmitting GPS

data to the FrontEnd. When the user clicks the start button the program first initializes the

KML_Interface object as a means of handling the GPS data when it starts coming in. The

KML_Interface prescribes a means of taking GPS data in inserting the Latitude/Longitude

coordinates into pre-defined segments of the Keyhole Markup Language text. These segments

are then written to a file that can then be read in Google Earth to communicate geographic data

and visually represent data points in space.

Figure 3.2 Shows a minimal segment of .kml code, sufficient enough to drop a place mark on a

map, as prescribed by Google API

Upon clicking the start button, the end button becomes enabled, and the start button becomes

disabled. The Arduino program will continue to transmit GPS coordinates until the end button is

pressed. At this point the end button will activate an event and will cause the Xbee_Interface to

send a byte sequence to the Edison to stop transmitting. This will be acknowledged by the

Edison controller so that the host will know to finish writing to the .kml file. Pressing the end

20

button will also enable the start button again so that the user will have the option to continue

receiving GPS data. The user also can terminate the program by pressing the disconnect button.

The design of the program is such that there is no need for direct human interaction with the

Arduino system, and that the supplied tools (GUI) are sufficient to meet the internet of a capable

interface.

3.3 Agile Methodology

Given that this project is the offspring of another project I was working on, a lot of last minute

adjustments had to be made to cut back on the size and scope, leaving just this boiled down GUI

as the result. Given that that decision was also made so late in the game (End of February), the

team had to be flexible and realistic enough in changing its course to allow time to complete all

the required documentation (validating another point for Agile, in not holding the team bound to

volumes of pseudocode at the onset of development).

Table 3.3 Shows the general flow of the Agile coding lifecycle throughout project development

However, given the rapid change in direction of the project, the team had not had sufficient time

to inform Dr. Cavalcanti of its intent when he signed on to be the project supervisor. Given this

constraint, the best is being made do with the current situation.

3.4 Motivation

Again, as previously stated, the intent of this project is to develop a base set of tools that can be

integrated later into future projects. And, working with microcontrollers can be a great learning

aid for individuals who are just starting out in the DIY community.

3.5 Recent Developments

Testing of the Edison system will begin soon. The link for the Bitbucket account hosting source

code will be found at: https://Codemonkey40k@bitbucket.org/csce407_capstonegroup/master.git

https://Codemonkey40k@bitbucket.org/csce407_capstonegroup/master.git

21

Chapter 4

Arduino GPS Program User Manual and

Instillation Guide

4.1 Introduction

This chapter is a supplement to setting up the Arduino GPS Logging Program, configuring all

devices and equipment, and loading the applicable libraries. The intent of this section is to

inform the user about configuration data to get the project up and running smoothly. While the

development team for this project recognizes that the instructions require much on the end user

do themselves, it may be a future goal for this project to wrap all start up utilities into one zip

and introduce an auto-install feature to make set-up as seamless as possible.

4.2 Application

The Arduino GPS Logging system was created by Kenneth Mendenhall for CSCE 407 Capstone

course at the University of Alaska Anchorage. There is no differentiation in the versions yet as

oll source is under one Master Branch on the hosted BitBucket webpage.

4.3 Setup

This section is a walkthrough of the required components for successful operation of the Arduino

GPS Logging program, as well as providing URL links to resources to acquire those

22

components. This is to save the user (potentially) hours of head scratching and page turning

across the internet to find resources and instructions for each part, just to get started.

- The classes here-in make use of Java RXTXComm.jar found at

 http://rxtx.qbang.org/wiki/index.php/Main_Page

- Place the RXTXComm.jar on local machine here:

C:\Program Files\Java\jdk1.8.0_66\jre\lib\ext

- Additional files required will be rxtxSerial.dll. The 64-bit version called 'RXTX native

driver' can be found here:

http://jlog.org/rxtx-win.html

- And placed on local machine here:

C:\Program Files\Java\jdk1.8.0_66\jre\bin

- Download the Arduino IDE, or latest version thereof, can be obtained from the Arduino

home page at:

https://www.arduino.cc/en/Main/Software

- Download of the Intel Edison® Installer and image was acquired from, along with the

installation tutorial:

https://software.intel.com/en-us/get-started-edison-windows-step2

- Transcribe the libraries over to the (default on setup of Arduino instillation) directory:

C:\Program Files (x86)\Arduino\libraries

- XBee radios will need to be configured using the XCTU interface and can be acquired

from Digi’s webpage at:

 http://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu

- To put devices on the same network each device MAC address will need to be configured

inside the XCTU interface so that the devices know who to look for.

-

- While sing Netbeans (or the IDE of preference) add the libraries to your project and

import the code.

http://rxtx.qbang.org/wiki/index.php/Main_Page
http://jlog.org/rxtx-win.html
https://www.arduino.cc/en/Main/Software
https://software.intel.com/en-us/get-started-edison-windows-step2
http://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu

23

4.3 Motivation

The motivation for this section is that the required components must be configured for the

Arduino / Intel Edison® to be able to operate correctly.

Additional objectives of this section will be to find the error recording rate of the GP-17340

receiver as well as seeing if additional accuracy can be obtained by eliminating such error

causing situations. This will be done by finding situations, via frequent usage, where the GPS

receiver transmits faulty / inaccurate data, finding common elements across those situations, and

then finding ways tom mitigate faulty readings for future applications. This was not an

immediate objective on the project, but will be necessary for future implementations of the

project and it’s further development and application.

4.4 Recent Developments

Right now the Java side code is being integrated with the Edison side C code for passing of GPS

data. There is a Bitbucket account for hosting developments on the project as well as source

code.

24

Chapter 5

Arduino GPS Logging Program Summary

and Conclusions

5.1 Introduction

The Arduino GPS Project was devised as an attempt to make a consolidated resource for

interfacing Google Earth with the data coming from a GPS unit, in order to realize path

information in a simple manner. In order to do this an understanding of how geographic data is

represented in Google Earth was acquired, by studying the Keyhole Markup API, and a means of

making modifications to such Keyhole Markup files was constructed.

In addition to the afore mentioned functionality, the Arduino GPS Logging system had to

interface a user with an Arduino based paltform. The project accounted for this platform being

dislocated from the user, however, successful implementation of the remote control functionality

was not made possible, and local testing was done via a hardline USB cable. Future development

will modify this flaw.

5.2 Lessons Learned

The Arduino GPS Project was initially planned as part of a larger development that involved

using a two-way communications channel to interface the computer side program with the

Arduino platform. As such, this bigger project would have accounted for the user plotting a path

in Google Earth and saving the path in a .kml file. The program would have been able extract

the path, as an array of latitude / longitude points, and send it to the Arduino unit.

25

Future development could include a self navigating system that recieves a set of waypoints and,

after acquiring a GPS fix, could navigate along this assigned path using the GPS data as a point

of reference.

A lot of problems were encountered in development of this project, some were overcame, others

not. The GPS module became inable to recieve a valid fix, therefore, in the middle of

development modifications had to be made to the code, so that it would still execute regardless

of the lack of signal. Future work with the Arduino GPS Logging Program will possibly require

the acquisition of a new GPS module to replace the current one.

Other problems encountered were that the XBee radio module could not be used in the project at

the same time with the GPS module. This is due to the fact that both of the libraries designed to

support their hardware made use of the Rx port (Pin 0) on the Edison Breakout Development

Board. Future development on this end will necessitate the possible use of the SoftwareSerial

library, supplied as default for the Arduino, to read from a seperate PWM pin and forward the

data on to the data parsing program for the GPS.

5.3 Implications

As previously stated the Arduino GPS Data Logging program was intended for a larger project.

Work will be conducted over the next several months to incorporate the Data Logger into a

functional, autonomous, self navigating system. Such work, hopefully, will have broader

applications in the field of Search and Rescue or Wildlife Management in Alaska. It is the hope

of the project developers that this system will be put to good use.

Figure 5.1 Shows two XBee Radios and a 9 Axis-IMU, all future expansions to the GPS Logging

program

Based on feedback I got from the poster session, one feature that will need further work is the

analysis of power consumption with the GPS and Edison systems, and how to seperate them

26

from the application user without the USB teather. Figure 5.1 presents a visual of future modules

to expand the Data Logging program with.

27

Appendix A

Appendix A: Shows the high level structure of the ArduinoGPS_Logging program and all of its

dependencies

28

Appendix B

package X_ArduinoGPSLogger;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import com.digi.xbee.api.XBeeDevice;

import com.digi.xbee.api.exceptions.XBeeException;

import gnu.io.CommPortIdentifier;

import gnu.io.SerialPort;

import gnu.io.SerialPortEvent;

import gnu.io.SerialPortEventListener;

public class GPSLogger_FrontEnd extends JFrame implements ActionListener, WindowListener

{

 private KML_Interface tracks;

 private XBee_Interface radio;

 private SerialComm writer;

 private final int WIDTH = 850, HEIGHT = 450;

 private final JPanel gpsControlPanel;

 private final JButton connect_Button, start_Button, end_Button, disconnect_Button;

 private boolean isConnected = false, xmlWritable = false;

 public GPSLogger_FrontEnd()

 {

 Container arduContentPanel = getContentPane();

 writer = new SerialComm(this);

 tracks = new KML_Interface(this);

 while(writer.initialize() == false)

 {

 System.out.println("Unable to find Port. Exiting now.");

 System.exit(0);

 }

 arduContentPanel.setLayout(new GridLayout(2,2));

29

 arduContentPanel.setBackground(Color.gray);

 setTitle("Arduino GPS Logging Interface");

 setSize(WIDTH, HEIGHT);

 setLocation(300,250);

 setResizable(false);

 isDisplayable();

 toFront();

 setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

 addWindowListener(this);

 //Button Panel////////////////////////////////////

 gpsControlPanel = new JPanel(new GridLayout(3,1));

 connect_Button = new JButton("Connect");

 connect_Button.addActionListener(this);

 start_Button = new JButton("Start");

 start_Button.addActionListener(this);

 start_Button.setEnabled(false);

 end_Button = new JButton("End");

 end_Button.addActionListener(this);

 end_Button.setEnabled(false);

 disconnect_Button = new JButton("Disconnect");

 disconnect_Button.addActionListener(this);

 disconnect_Button.setEnabled(false);

 gpsControlPanel.add(connect_Button);

 gpsControlPanel.add(start_Button);

 gpsControlPanel.add(end_Button);

 gpsControlPanel.add(disconnect_Button);

 gpsControlPanel.setVisible(true);

 add(gpsControlPanel);

 setVisible(true);

 }

 public void actionPerformed(ActionEvent event)

 {

 byte temp;

30

 if(event.getSource().equals(connect_Button))

 {

 //radio = new XBee_Interface();

 temp = 48;

 writer.serialWrite(temp);

 start_Button.setEnabled(true);

 connect_Button.setEnabled(false);

 isConnected = true;

 }

 else if(event.getSource().equals(start_Button))

 {

 temp= 49;

 writer.serialWrite(temp);

 end_Button.setEnabled(true);

 start_Button.setEnabled(false);

 disconnect_Button.setEnabled(false);

 }

 else if(event.getSource().equals(end_Button))

 {

 temp = 50;

 writer.serialWrite(temp);

 end_Button.setEnabled(false);

 start_Button.setEnabled(true);

 disconnect_Button.setEnabled(true);

 }

 else if(event.getSource().equals(disconnect_Button))

 {

 temp = 51;

 writer.serialWrite(temp);

 isConnected = false;

 System.exit(0);

 }

 }

 public void windowOpened(WindowEvent e)

 {

 }

31

 public void windowActivated(WindowEvent e)

 {

 }

 public void windowIconified(WindowEvent e)

 {

 }

 public void windowDeiconified(WindowEvent e)

 {

 }

 public void windowDeactivated(WindowEvent e)

 {

 }

 public void windowClosed(WindowEvent e)

 {

 if(isConnected = true)

 {

 System.out.println("System is currently in use. Premature termination is not

authorized.\n"

 + "Please click \"End\" then \"Disconnect\".");

 }

 }

 public void windowClosing(WindowEvent e)

 {

 }

}

class GPS_Interface

{

 public static void main(String[] args)

 {

 GPSLogger_FrontEnd logger = new GPSLogger_FrontEnd();

 }

}

32

package X_ArduinoGPSLogger;

import java.io.IOException;

import java.util.Scanner;

import org.jsoup.Jsoup;

import org.jsoup.parser.Parser;

import org.jsoup.nodes.Document;

import org.jsoup.select.Elements;

import java.util.ArrayList;

import java.io.FileReader;

import java.io.BufferedReader;

import java.io.RandomAccessFile;

import java.io.File;

//import javax.swing.JFileChooser;

//import javax.swing.filechooser.FileSystemView;

import javax.swing.*;

/**

 * Name: Kenneth Mendenhall

 * Date: 27NOV15

 * Course: CSCE 470 Capstone Project

 * University of Alaska Anchorage

 *

 * Purpose:

 * This program is designed to augment a package of tools for the ArdUAV

 * package.

 *

 * This class provides functionality to read and write to separate files

 * for the purposes of:

 * - transcribing received coordinates as a means of visually tracking flight

 * in a Google Earth application

 * - Reading coordinates from a file for the purpose of loading a flight

 * path to the ArdUAV drone

 *

 */

public class KML_Interface

{

 private int trackCount = 0;

 private final Scanner keys;

 private final GPSLogger_FrontEnd frontEnd;

 private final File pathLogger;

 KML_Interface(GPSLogger_FrontEnd frontIn)

 {

 keys = new Scanner(System.in);

 frontEnd = frontIn;

33

 String filePath = "C:\\Users\\Kenneth\\Desktop\\UAA\\Capstone";

 File dir = new File(filePath);

 JFileChooser waypointFile = new JFileChooser();

 waypointFile.setCurrentDirectory(dir);

 JOptionPane.showMessageDialog(frontEnd, "This is a one time selection. Please select

a .kml file\n"

 + "so the program can log the devices path.");

 waypointFile.showDialog(frontEnd, "Select file to log path");

 if(waypointFile.getSelectedFile() != null)

 {

 pathLogger = waypointFile.getSelectedFile();

 }

 else

 {

 while(waypointFile.getSelectedFile() == null)

 {

 waypointFile = new JFileChooser();

 waypointFile.setCurrentDirectory(dir);

 JOptionPane.showMessageDialog(frontEnd, "You must select a file to configure the

program!");

 waypointFile.showDialog(frontEnd, "Select file to log UAV flight path");

 }

 pathLogger = waypointFile.getSelectedFile();

 }

 }

 //create functionality to write to/modify existing file

 //for the purposes of logging waypoints from travel

 //Generic .kml code for Waypoint storage looks like:

 /*

 <Placemark>

 <name>Track[i]</name>

 <open>1</open>

 <styleUrl>#msn_track</styleUrl>

 <Point>

 <gx:drawOrder>1</gx:drawOrder>

 <coordinates>-149.7444444444444,61.20777777777779,0</coordinates>

 </Point>

 </Placemark>

 */

 void writeCoordinatesToFile(double latIn, double longIn)

34

 {

 try

 {

 RandomAccessFile file = new RandomAccessFile(pathLogger, "rw");

 //Constant offset 'file.length()-21' from the end of file

 //to place the write position of the file writer just before:

 // </Document>

 // </kml>"

 //so that new coordinates can be loaded to the file without overwriting

 //or potentially corrupting existing data

 file.seek(file.length()-19);

 file.writeBytes("<Placemark>\n"

 + "<name>" + trackCount + "</name>\n"

 + "<open>1</open>\n"

 + "<styleUrl>#msn_track</styleUrl>\n"

 + "<Point>\n"

 + "<gx:drawOrder>1</gx:drawOrder>\n"

 + "<coordinates>" + longIn +","+ latIn + ",0</coordinates>\n"

 + "</Point>\n"

 + "</Placemark>\n"

 + "</Document>\n"

 + "</kml>");

 trackCount++;

 }

 catch(IOException e)

 {

 System.out.println("Error ammending " + pathLogger.getPath() +

pathLogger.getName());

 }

 }

 void writeCoordinatesToFile(ArrayList<Double> coords)

 {

 try

 {

 RandomAccessFile file = new RandomAccessFile(pathLogger, "rw");

 for(int i = 0; i < coords.size(); i+=2)

 {

 //Constant offset 'file.length()-21' from the end of file

 //to place the write position of the file writer just before:

 // </Document>

 // </kml>"

 //so that new coordinates can be loaded to the file without overwriting

35

 //or potentially corrupting existing data

 file.seek(file.length()-19);

 file.writeBytes("<Placemark>\n"

 + "<name>" + trackCount + "</name>\n"

 + "<open>1</open>\n"

 + "<styleUrl>#msn_track</styleUrl>\n"

 + "<Point>\n"

 + "<gx:drawOrder>1</gx:drawOrder>\n"

 + "<coordinates>" + coords.get(i) +","+ coords.get(i+1) +

",0</coordinates>\n"

 + "</Point>\n"

 + "</Placemark>\n"

 + "</Document>\n"

 + "</kml>");

 trackCount++;

 }

 }

 catch(IOException e)

 {

 System.out.println("Error ammending " + pathLogger.getPath() +

pathLogger.getName());

 }

 }

 //Return null if error

 //otherwise returns list of lat/long coordinates

 // works but for insert into correct position

 // Ammendmet from origional version:

 // This function will now parse coordinates from a

 // "path" from Google Earth rather than having

 // individual waypoints.

 boolean parseCoordinatesFromFile()

 {

 //Ideally get file filter working to scrub out the other garbage

 //FileFilter filter = new FileNameExtensionFilter(null, "kml");

 String filePath = "C:\\Users\\Kenneth\\Desktop\\UAA\\Capstone";

 File dir = new File(filePath);

 JFileChooser waypointFile = new JFileChooser();

 waypointFile.setCurrentDirectory(dir);

 //waypointFile.setFileFilter(filter);

 int val = waypointFile.showDialog(frontEnd, "Select");

36

 if(val == JFileChooser.APPROVE_OPTION)

 {

 try

 {

 StringBuilder buf = new StringBuilder();

 try (BufferedReader in = new BufferedReader(new

FileReader(waypointFile.getSelectedFile())))

 {

 String str;

 while ((str = in.readLine()) != null)

 {

 buf.append(str);

 }

 in.close();

 }

 String html = buf.toString();

 Document doc = Jsoup.parse(html, "", Parser.xmlParser());

 Elements list = doc.select("coordinates");

 ArrayList<Double> coords = new ArrayList<>();

 String temp = list.toString().replace("<coordinates>", "").replace("</coordinates>",

"");

 String[] tempArray = temp.split(",");

 tempArray[0] = tempArray[0].replaceAll("\\s+","");

 coords.add(Double.parseDouble(tempArray[0]));

 coords.add(Double.parseDouble(tempArray[1]));

 for(int i = 2; i < tempArray.length-1; i+=2)

 {

 tempArray[i] = tempArray[i].substring(1, tempArray[i].length()-1);

 coords.add(Double.parseDouble(tempArray[i]));

 coords.add(Double.parseDouble(tempArray[i+1]));

 }

 //for testing purposes

 writeCoordinatesToFile(coords);

 //figure out way to handle comm flow between drone and base

 //via CommSuite class

37

 return true;

 }

 catch (IOException | NumberFormatException e)

 {

 JOptionPane.showMessageDialog(frontEnd, "Error was caught in

parseCoordinatesFromFile()\n" +

 "and in parsing flight path from .kml file.");

 return false;

 }

 }

 else

 {

 JOptionPane.showMessageDialog(frontEnd, "You did not select a waypoint file. You

may continue to fly the drone\n "

 + "manually but will need a loaded set of waypoints to enable

Auto-Pilot");

 return false;

 }

 }

 /*

 public static void main(String[] args)

 {

 XMLHandler parser = new XMLHandler(null);

 Scanner keys = new Scanner(System.in);

 System.out.print("Please enter a valid filepath: ");

 try

 {

 double[] coords = parser.parseCoordinatesFromFile(keys.nextLine());

 if(coords == null)

 return;

 for(int i = 0; i < coords.length; i+=3)

 {

 System.out.println("Latitude is: " + coords[i]);

 System.out.println("Longitude is: " + coords[i+1]);

 }

 }

 catch(Exception e)

 {

 System.out.println("An error occured in accessing file");

 }

38

 parser.writeCoordinatesToFile(12, 12);

 }

 */

}

39

References

Electronics, My Funny (2014). How to Configure XBee Modules For Simple Peer-to-Peer

Communication. Date accessed: April, 2016. https://www.youtube.com/watch?v=77LTEjP-S6Y

Intel (2016). Assembling the Intel Edison® Board With the Arduino* Expansion Board. Date

Accessed: April, 2016. https://software.intel.com/en-us/assembling-intel-edison-board-with-

arduino-expansion-board

Olaussen, Arve (2011). RXTX for Windows. Date Accessed: April, 2016. http://jlog.org/rxtx-

win.html

International, Digi (2016). XCTU: Next Generation Configuration Platform for Xbee/RF

Solutions. Date Accessed: April, 2016. http://www.digi.com/products/xbee-rf-solutions/xctu-

software/xctu

Arduino (2016), Arduino UNO & Genuino UNO. Date Accessed: April, 2016.

https://www.arduino.cc/en/main/arduinoBoardUno

https://www.youtube.com/watch?v=77LTEjP-S6Y
https://software.intel.com/en-us/assembling-intel-edison-board-with-arduino-expansion-board
https://software.intel.com/en-us/assembling-intel-edison-board-with-arduino-expansion-board
http://jlog.org/rxtx-win.html
http://jlog.org/rxtx-win.html
http://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu
http://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu
https://www.arduino.cc/en/main/arduinoBoardUno

