
CVPI: A Computer Vision Library

For Mobile and Embedded Platforms

Devin Homan

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Existing Software Architecture . 3
1.3 CVPI Interface and Library . 3

2 CVPI EGL Interface 4

3 CVPI Image Library 6
3.1 OpenVG API . 6

3.1.1 CPU/GPU Memory Transfer . 6
3.1.2 Copying Images . 7
3.1.3 Pixel Vector Matrix Multiplication 7
3.1.4 Convolution . 8
3.1.5 Value Mapping . 9

3.2 Filters . 10
3.2.1 Magnitude . 10

3.3 OpenVG API Wrappers . 11
3.4 YUYV to YUVA . 12
3.5 Color to Black and White . 13
3.6 Image Addition and Subtraction . 13
3.7 Channel Addition and Subtraction . 17
3.8 Combining Images by Channel . 18
3.9 Thresholding . 18
3.10 Masking . 19
3.11 Statistics . 19

3.11.1 Average . 20
3.11.2 Channel to Data . 20
3.11.3 Max and Min . 20
3.11.4 Histogram and Cumulative Distribution 20

3.12 Histogram Equalization . 21
3.13 Logic Operations . 21
3.14 Morphology . 22

1

3.14.1 Dilation and Erosion . 23
3.14.2 Thinning, Thickening, and the Hit-and-Miss Transform 23

3.15 Data Points . 23
3.16 YUVA to RGBA . 24

4 Logging 24

5 Image Headers 25

6 Video4Linux 25

7 Building 26
7.1 Compiler Options . 26

8 Using CVPI 27

9 Sample Program 29

10 Bindings 29

11 Tests 30

12 Coding Conventions 30
12.1 Naming . 30
12.2 Code Structure . 30
12.3 Optimization . 31
12.4 C99 and other C Things . 31

13 Documentation 32

14 Project Statistics 32

15 License 32

1 Introduction

CVPI is a library for implementing computer vision programs on computers supporting
OpenVG. It adds additional image processing capabilities to OpenVG that are necessary for
computer vision, as well a as providing an interface to setup the rendering environment.

OpenVG is a hardware accelerated C API for vector and raster 2D graphics [6]. It is
widely supported on mobile and on embedded platforms.

1.1 Motivation

Single board computers, such as the Raspberry Pi, have become a popular platform for
robotics. These boards come with GPUs, which are currently not being utilized in this area.

2

The GPUs on these computers support OpenVG and OpenGL ES. Current computer vision
software, such as OpenCV, rely on OpenCL or CUDA, which are GPU languages that are
not supported on current mobile and embedded GPUs. Currently, to do computer vision
on mobile and embedded platforms, all computation has to be performed by the on board
CPU, or the data has to be transferred to a remote computer for processing. OpenVG offers
the necessary functionality to create computer vision software and is available natively on
these platforms.

The Raspberry Pi is already being used for computer vision controlled robots and is
marketed as a computing platform for teaching programming and computer hardware con-
cepts to secondary students. In one such example, a high-school student built a line tracking
robot using OpenCV. The Raspberry Pi, which normally runs at 800MHz, was overclocked
to 1GHz, and the tracking rate was between 12 to 14fps [9]. Running OpenVG and other
GPU code is non-trivial and under-documented on the Raspberry Pi. The CVPI EGL in-
terface aims to alleviate the complexity as much as possible. CVPI can also allow for the
same results, that the student achieved with OpenCV, with greater efficiency by moving
computation to the GPU.

CVPI could be utilized beyond the Raspberry Pi. Many GPUs used in smart phones
and other mobile devices support OpvenVG; though Android apparently does not have an
OpenVG API implementation. There are other competing single boards, such as pcDuino,
Odroid, and Banana Pi that could also utilize CVPI.

1.2 Existing Software Architecture

OpenVG interfaces with the kernel using EGL (Native Platform Graphics Interface). EGL,
OpenVG, and OpenGL ES are C APIs published by Khronos. EGL is used to set up the
rendering context: surface dimensions, what libraries to support (OpenVG or OpenGL),
pixel format, where rendering will be done (on screen or in memory) [7]. The Raspberry Pi’s
Khronos APIs were implemented by the GPU chip manufacturer, Broadcom, and are BSD
licensed [12].

OpenGL ES was not used in this project. OpenVG and OpenGL ES cannot communi-
cate directly with each-other; they cannot share contexts [7, p. 7]. They could potentially
communicate by reading and writing to and from main memory. OpenVG has so far been
sufficient for implementing computer vision related algorithms.

1.3 CVPI Interface and Library

CVPI has two main parts, an EGL setup and take-down interface, and a library of image
processing functions relevant to computer vision.

CVPI offers a template interface for setting up and taking down EGL. Setting up EGL
correctly is non-trivial, especially on the Raspberry Pi, with steps that have to be done in a
certain order and settings that are very particular. The majority of the steps are always the
same; however, there are some steps that cannot be accounted for, which are implementation
dependent, that the user must provide.

CVPI is meant to add to OpenVG rather than exist on top of it. OpenVG is a C API,
and so CVPI was written in C, specifically C99. C also has the benefit of portability between

3

client languages. CVPI can be used by programmers wishing to write their projects in other
languages. Most languages have built-in or standard methods for binding to C functions and
values.

2 CVPI EGL Interface

Setting up and taking down EGL is non-trivial. The file cvp egl config.h contains the func-
tions cvpi egl settings create, cvpi egl settings check, cvpi egl instance setup,
and cvpi egl instance takedown to help the programmer in this task.

cvpi egl settings create creates a structure of settings information that can be passed
to cvpi egl settings create or to cvpi egl settings check. cvpi egl settings check

can be used to check for faulty settings in the structure. If a bad setting is found, CVPI -
FALSE is returned and a warning is printed to the standard error output (stderr). Every
setting has associated set and check functions.

cvpi egl instance setup creates a cvpi egl instance structure that can be passed to
cvpi egl instance takedown. The structure gives the take-down procedure the information
needed to undo the setup procedure. The cvpi egl instance setup template performs the
following steps to setup EGL on the Raspberry Pi:

1. Calls bcm host init()

• Specific to the Raspberry Pi, it is an undocumented procedure required for
Broadcom’s implementation

2. Calls eglGetDisplay()

3. Calls eglInitialize()

• Initializes the display returned by eglGetDisplay

4. Calls eglBindAPI()

• Chooses the rendering API: OpenVG or OpenGL ES

5. Calls eglChooseConfig() twice

• First, to get the number of configurations supporting the client provided set-
tings. Space is allocated, and eglChooseConfig() is called again to populate
the space with configuration information.

Figure 1: Algorithm for setting up EGL. (cont.)

4

6. An EGL surface is created. If the surface is a pixmap or window, then the user
must supply a function to create an EGLNativePixmapType or an EGLNativeWin-
dowType, respectively. These are implementation specific types.

• If the user specified a pixmap surface

(a) EGLNativePixmapType is created using a user supplied function.

(b) eglCreatePixmapSurface() uses the EGLNativePixmapType and the
eglChooseConfig() generated configuration list to create an EGL
surface. The function loops through configurations returned by
eglChooseConfig() until one works.

• If the user specified a window surface

(a) EGLNativeWindowType is created using a user supplied function. There
are multiple Broadcom implementations for creating window surfaces,
such as the set of functions vc dispmanx *, which are Broadcom specific,
and OpenWF, a Khronos API for creating window surfaces [12].

(b) eglCreateWindowSurface() uses the EGLNativeWindowType and the
eglChooseConfig() generated configuration list to create an EGL
surface. The function loops through configurations returned by
eglChooseConfig() until one works.

• If the user specified a pbuffer surface

(a) eglCreatePbufferSurface() is called with the eglChooseConfig()

generated configuration list to create an EGL surface. The function loops
through configurations returned by eglChooseConfig() until one works.

• If no surface type was specified, then this step is skipped.

7. Calls eglCreateContext() to create a rendering context.

8. Calls eglMakeCurrent() if the user specified for this context to be the current
context.

• The current-context read and draw parameters are set to the same surface.
OpenGL ES allows for different surfaces for reading and drawing; however,
OpenVG does not. The user can change this after cvpi egl instance setup

finishes.

Figure 1: Algorithm for setting up EGL.

Every step in the process is logged to cvpi log file, which defaults to stderr. Finding
a working EGL setup procedure for a particular project will likely require multiple revisions.
Broadcom’s EGL implementation is poorly documented and does not give explanations why
failures occur when EGL fails to start, which is in part the reason for cvp egl config.h.

If an EGL error occurs in cvpi egl instance setup, then the function will jump to
the appropriate place in the take-down procedure. If a system error occurs, then the GPU

5

might be left in a bad state that makes it impossible to create another EGL instance without
reboot. The operating system does not appear to entirely clean up GPU related material
after the program halts. The take-down procedure is as follows:

1. Call eglDestroyContext().

2. Call eglDestroySurface().

3. If a window or pixmap was created, call a user supplied function to undo what
was done by the user supplied EGLNativeWindowType or EGLNativePixmapType
returning function.

4. Free memory allocated for eglChooseConfig().

5. Call eglTerminate().

6. Free memory allocated for cvpi egl instance setup’s return value.

7. Call bcm host deinit(), if using the Broadcom implementation.

Figure 2: Algorithm for taking down EGL.

3 CVPI Image Library

3.1 OpenVG API

OpenVG has functions for manipulating images. OpenVG can read and write using a variety
of different formats. Internally, images are represented using four 8-bit channels per pixel
[6].

The choice of what functions to implement came from a list of functions which are
described on the web site, Image Processing Learning Resources in the “Worksheets” subdi-
rectory [11]. Other functions, such as histogram equalization, come from Computer Vision
by Richard Szeliski [15]. For the most part, functions were only implemented if they could
initialize the GPU and could not be trivially and directly done with the existing OpenVG
functions. Other functions that cannot utilize the GPU might be added to CVPI in the
future. The GPU is very proficient at performing mapping operations on data sets but is
not very good at doing reduction operations.

3.1.1 CPU/GPU Memory Transfer

OpenVG can read data directly from CPU memory into an image using vgImageSubData,
and can write directly to CPU memory with vgGetImageSubData. OpenVG uses RGBA (red,
green, blue, alpha) to represent the four channels [6]. On little-endian systems, CVPI uses
VG sARGB 8888 for the color space. When processing data, returned by vgGetImageSubData,
with array indexing, the blue channel is the first index, green is the second, red is the third,
and alpha is the last. CVPI has not yet been tested on a big-endian system. ARM CPUs

6

support both endiannesses but, so far, there are no available big-endian operating system
images for the Raspberry Pi.

CVPI assumes that in memory, the image’s origin is in the upper left with data proceeding
left to right and then top to bottom, which is the standard for Video4Linux (V4L) formats
[13, Sec. 2.1]. OpenVG’s image coordinate system starts in the lower left corner with the
x-position in the horizontal and the y-position in the vertical [6, Sec. 10.1]. Essentially the
y-axis is flipped and translated. CVPI functions are not affected by this difference, unless
otherwise noted.

3.1.2 Copying Images

vgCopyImage can copy part of an image into another image [6]. This function is utilized
extensively by CVPI.

3.1.3 Pixel Vector Matrix Multiplication

vgColorMatrix multiplies a 4×4-matrix by each pixel vector and adds a bias vector to the
resulting value to create a new image [6]. vgColorMatrix’s matrix argument is the transpose
of the mathematical representation, plus four bias values.

A[2 0] = {1 , 2 , 3 , 4 ,
5 , 6 , 7 , 8 ,
9 , 10 ,11 ,12 ,
13 ,14 ,15 ,16 ,

17 ,18 ,19 ,20} ;

R′

G′

B′

A′

←

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

R

G

B

A

+

17
18
19
20

→

R + 5G+ 9B + 13A+ 17
2R + 6G+ 10B + 14A+ 18
3R + 7G+ 11B + 15A+ 19
4R + 8G+ 12B + 16A+ 20

Figure 3: vgColorMatrix argument and mathematical representation [6, p. 176].

The square matrix is an array of floats between zero and one. The last four parameters
of the input array are also floats between zero and one. OpenVG represents pixel values
as decimal numbers between 0 and 1 when multiplying and adding, but the output is then
re-scaled to range from 0 to 255.

Pre-Defined Matrices CVPI has a number of pre-defined inputs.

7

cvpi invert colors

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

R

G

B

A

+

255
255
255
0

→

255−R

255−G

255−B

A

cvpi avuy2ayuv Change the channel ordering returned by the function cvpi yuyv2yuva

to canonical form.

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

V

U

Y

A

→

Y

U

V

A

cvpi pixel average Average all channel values together and output the average in each
channel.

cvpi pixel color average Average the color channel values together and output the aver-
age in each color channel.

cvpi channel red, cvpi channel green, cvpi channel blue, cvpi channel alpha Replace
the values in the other channels with the value in the specified channel.

3.1.4 Convolution

OpenVG has two functions for convolution vgConvolve and vgSeparableConvolve. OpenCV
also has a Gaussian blur function, vgGaussianBlur [6].

OpvenVG’s convolution formula is:

I(x, y) = s

(

w−1
∑

i=0

h−1
∑

j=0

k(w − i− 1, h− j − 1)P (x+ i− sx, y + j − sy)

)

+ b

where w and h are the image’s width and height, k is the convolution kernel, P is the
input image, sx and sy are integer values for shifting the input and output, s is a scalar, and
b is a bias. Image channel values are treated as floating point values between 0 and 1, so b

must be a value between -1 and 1. The image and kernel are indexed from zero starting in
the lower left corner [6, pp. 177-180].

When coding in a convolution kernel in C, the mathematical definition of the convolution
kernel must be transposed then flipped. The kernel dimensions will also be switched from
the mathematical representation.

For example,

1 4 7
2 5 8
3 6 9

T

0 0 1
0 1 0
1 0 0

→

3 2 1
6 5 4
9 8 7

8

VGshort k e rne l [9] = {3 ,2 ,1 ,
6 ,5 , 4 ,
9 , 8 , 7} ;

Proof. Given a two-dimensional C array representation of an OpenVG kernel, C defines the
one-dimensional index of an element in a two-dimensional array to be y · arrayHeight + x.
The OpenVG kernel entry (i, j) is located at i · kernelHeight + j [6, p. 178]. So because
arrayHeight = kernelHeight and arrayWidth = kernelWidth, array[x][y] = kernel(i, j),
where x ≡ i and y ≡ j. Because the array starts in the upper left and the kernel starts in
the lower left, this mapping will flip vertically the visual ordering. The matrix array is in
row-major form, so to get the column major form, the matrix must be transposed. To go
from the mathematical representation, to the OpenVG input array representation, the steps
must be done in reverse order. Thus, the transpose must be done before flipping.

3 2 1
6 5 4
9 8 7

0 0 1
0 1 0
1 0 0

T

→

1 4 7
2 5 8
3 6 9

3.1.5 Value Mapping

OpenVG has two functions, vgLookup and vgLookupSingle, that can be used for function
mapping. The mapping functions are represented by arrays of length 256, with values ranging
from 0 to 255. vgLookup uses a different mapping function for each channel.

R

G

B

A

fR
−→

fG
−→

fB
−→

fA
−→

R′

G′

B′

A′

While, vgLookupSingle maps a single channel, C, to a value representing all four channels
using a single mapping function [6].

C →

R′

G′

B′

A′

CVPI provides a number of function arrays for use with vgLookup.

cvpi identity array The input values equal the output values.

cvpi inversion array Output equals 255− input.

cvpi 255 array All values are mapped to 255.

cvpi zeros array All values are mapped to 0.

9

cvpi binary array 0 is mapped to 0, and non-zero values are mapped to 255.

cvpi binary array inverted 0 is mapped to 255, and non-zero values mapped to 0.

cvpi sqrt array floor ⌊√x⌋

cvpi sqrt array ceil ⌈√x ⌉

cvpi sqrt array round ⌊√x+ 0.5⌋

3.2 Filters

CVPI provides a number of pre-defined feature detection kernels. It also provides a function,
cvpi image magnitude, for calculating the gradient magnitude, that is

√

K2
1
+K2

2

where K1 and K2 are the convolution results. The function is applied independently to
each channel.

Y X

Sobel

−1 −2 −1
0 0 0
1 2 1

−1 0 1
−2 0 2
−1 0 1

Scharr

3 10 3
0 0 0
−3 −10 −3

3 0 −3
10 0 −10
3 0 −3

Prewitt

−1 −1 −1
0 0 0
1 1 1

−1 0 1
−1 0 1
−1 0 1

Robert’s Cross

(

0 1
−1 0

) (

1 0
0 −1

)

Figure 4: Predefined convolution matrices [11][17].

3.2.1 Magnitude

G =
√

G2
x +G2

y

.
The function cvpi image magnitude calculates the pixel magnitude between two images.

For the magnitude to be computed on the GPU, the sum cannot exceed 255. The inputs
Gx and Gy are integer values between 0 and 255. Let Gx = ax and Gy = ay, the formula
becomes

G = a
√

x2 + y2

10

, where x2+ y2 ≤ 255, x2 ≤ 127.5, and y2 ≤ 127.5. Given G2

x = a2x2 and solving for a where
Gx = 255 and x =

√
127.5, a = 22.5831795814.

Three vgLookup array functions were calculated with Gx as the index input.

xceil =

⌈

Gx

a

⌉

, xfloor =

⌊

Gx

a

⌋

, and xround =

⌊

0.5 +
Gx

a

⌋

cvpi image magnitude applies the same look-up table to both inputs, Gx and Gy. The
user specifies which table to use. The resulting images are added together with cvpi image -

add. The sums will vary between 0 and 255. The square root function is applied to the sum,
s, using vgLookup. Which of the three square root functions to apply depends on the user.

⌈√
s
⌉

,
⌊√

s
⌋

,
⌊

0.5 +
√
s
⌋

So far
√

x2 + y2 has been calculated. So to get the magnitude G, the image channels are
multiplied by a, using vgColorMatrix.

3.3 OpenVG API Wrappers

There are a number of convenience functions in cvpi vg ext.h that wrap OpenVG functions;
they do not offer additional functionality but may be more intuitive and cut down on code
size.

The functions vgConvolve and vgSeparableConvolve scale image values between 0
and 1. It would be more intuitive and convenient if the values ranged from 0 to 255.
vgConvolveNormal and vgSeparableConvolveNormal take the same parameters as vgConvolve
and vgSeparableConvolve, but the bias parameter is divided by 255 before being passed to
the wrapped function.

Another problem with vgConvolve and vgSeparableConvolve is that the pixel being
convolved over is in the lower left hand corner of the kernel instead of in the center. The func-
tions vgConvolveNoShift, vgSeparableConvolveNoShift, vgConvolveNormalNoShift, and
vgSeparableConvolveNormalNoShift move the convolved pixel to the center of the kernel
by shifting in the y up by

⌊

h
2

⌋

and shifting in the x right by
⌊

w
2

⌋

. If the correction is not
done and zeros are given for the shifts, then data points in the resulting image will be shifted
towards the image origin.

The function vgColorMatrix also scales image values between 0 and 1.
vgColorMatrixNormal allows the user to specify values between 0 and 255 for the bias.

The function vgCreateImagePainted acts like vgCreateImage but adds four color pa-
rameters, allowing the user to create a new image having a solid color other than the default
white.

The function vgPixelBits takes a VGImageFormat and returns the number of bits per
pixel for that format.

Emacs Calc Extension In the extras directory, there is the file convolve.el. It contains
Emacs-Lisp Calc code to calculate convolutions, with the convolution kernel origin at the
kernel’s center pixel. The first argument is the image, the second the kernel, and the third
is optional. If the third argument is omitted, then the image will be padded with the same

11

value as the closest edge value. If a number is given, then the input matrix will be padded
with the given value. This is useful for investigating how convolutions behave.

convolve ([[0 , 0 , 0 , 0 , 0] ,
[0 , 1 , 1 , 1 , 0] ,
[0 , 1 , 1 , 1 , 0] ,
[0 , 1 , 1 , 1 , 0] ,
[0 , 0 , 0 , 0 , 0]] ,

[[1 , 1 , 1] , [1 , 1 , 1] , [1 , 1 , 1]])

convolve

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

,

1 1 1
1 1 1
1 1 1

→

1 2 3 2 1
2 4 6 4 2
3 6 9 6 3
2 4 6 4 2
1 2 3 2 1

convolve

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0
0 0 0 0 0

,

1 1 1
1 1 1
1 1 1

 , 1

→

6 5 6 5 6
5 4 6 4 5
6 6 9 6 6
5 4 6 4 5
6 5 6 5 6

3.4 YUYV to YUVA

Unlike OpenCV, CVPI does not natively support camera capture; however, this can be
achieved using a video capture API, such as Video4Linux (V4L). Most low-cost web cameras
output to YUYV, where two horizontal adjacent pixels are represented by 4 bytes. Both
pixels share the U and V channels but have different Y channels [13]. The function cvpi -

yuyv2yuva splits the pixels into separate 4 byte blocks. This function allows the other
OpenVG and CVPI functions to manipulate camera input; all other functions require that
each pixel have its own separate 4 byte representation. The user must read the raw image
data from memory into a VGImage, using CVPI’s default pixel format VG sARGB 8888,
and pass it to cvpi yuyv2yuva. The output image will be the same height, but twice the
width. The alpha channel will be set to 255.

The input image channel mapping is:

Y 2
U

Y 1
V

→

R

G

B

A

where, Y 1 is the yellow channel for the first pixel and Y 2 is the yellow channel for the second
pixel.

Using the function vgColorMatrixNormal, the input image is split into two different
images with the channels reordered and the alpha channel set to the maximum value, 255.

12

I1 ←

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

Y 2
U

Y 1
V

+

0
0
0
255

=

V

U

Y 1
255

→

R

G

B

A

I2 ←

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

Y 2
U

Y 1
V

+

0
0
0
255

=

V

U

Y 2
255

→

R

G

B

A

The two images, I1 and I2, are then combined in vertical, 1-pixel wide strips using
vgCopyImage. If the image is written to memory, Y will be at array index 0, U at index 1,
V at index 2, and A at index 3.

3.5 Color to Black and White

OpenVG can output to several formats including binary black and white, one bit per pixel.
cvpi image rgba2bw converts an image channel to such an image. With vgLookup, the
cvpi binary array or cvpi binary array inverted is used to convert the desired channel
to black and white, and cvpi zeros array is used to convert the other channels to zero.
vgCopyImage is used to convert vgLookup’s output to a binary image; 255 gets mapped to
1 bits and 0 gets mapped to 0 bits.

3.6 Image Addition and Subtraction

The function cvpi image add allows the user to add and subtract images of same dimensions.
The function is described by the formula:

Ci,j = s · (a · Ai,j + b ·Bi,j) + t

where pixel values range between 0 and 255, s is a floating point value, t is a bias passed
to vgConvolveNormal, and a and b are integers. A, B, and C are images, with i and j being
pixel locations. The function can perform subtraction by setting a or b to a negative value.

If the image height is less than or equal to half the maximum height, then the two images
are combined into a single image by copying horizontal strips, 1-pixel in height into another
image of twice the height, such that the first row is from the first image, the second row is
from the second image, and this is repeated for all following rows. The resulting image is
then convolved with vgConvolveNormal using a 2×1 kernel, k, where k0,1 = a and k0,0 = b.

OpenVG’s convolution formula becomes:

I(x, y) = s

(

1
∑

j=0

k(0, 1− j) · P (x, y + j)

)

+ t

I(x, y) = s(k0,1 · P (x, y) + k0,0 · P (x, y + 1)) + t

I(x, y) = s(a · P (x, y) + b · P (x, y + 1)) + t

13

where P is the input image and I is the output image, with pixel coordinate parameters,
the origin being in the lower left corner.

vgCopyImage is used to copy the even-indexed rows to another image, and the odd
indexed rows are thrown out.

For example, if two images A and B, both 1-pixel wide and two pixels high, are to be
added, the following steps are performed.

1. Combining the images:

Index
3 B10
2 A10
1 B00
0 A00

2. Convolution:

Index
3 B10+Padding
2 A10+B10
1 B00+A10
0 A00+B00

3. Removing the odd numbered rows:

Index
2 A10+B10
0 A00+B00

Figure 5: Example: Adding two 1×2 images, A and B.

For images larger in height than half the max height, the images are split in half, and
their upper and lower halves are added separately. If the image height is odd, then the top
rows are added separately from the other rows. That is, the image minus the top row is
split in half and added like in the even case, and then the top rows of each image are added
together.

14

1. Two images are created, combining image rows:

Upper
Index
3 B30
2 A30
1 B20
0 A20

Lower
Index
3 B10
2 A10
1 B00
0 A00

2. Convolution:

Upper
Index
3 B30+Padding
2 A30+B30
1 B20+A30
0 A20+B20

Lower
Index
3 B10+Padding
2 A10+B10
1 B00+A10
0 A00+B00

3. Removing the odd numbered rows and combining into a single image:

Index
2 A30+B30
0 A20+B20
2 A10+B10
0 A00+B00

Figure 6: Example: Adding two 1×4 images, A and B, where the maximum allowed image
height is 4.

15

1. Three images are created.

Top-row
Index
1 B40
0 A40

Upper
Index
3 B30
2 A30
1 B20
0 A20

Lower
Index
3 B10
2 A10
1 B00
0 A00

2. Convolution:

Top-row
Index
1 B40+Padding
0 A40+B40

Upper
Index
3 B30+Padding
2 A30+B30
1 B20+A30
0 A20+B20

Lower
Index
3 B10+Padding
2 A10+B10
1 B00+A10
0 A00+B00

Figure 7: Example: Adding two 1×5 images, A and B, where the maximum allowed image
height is 5. (cont.)

16

3. Removing the odd numbered rows and combining into a single image:

Index
0 A40+B40
2 A30+B30
0 A20+B20
2 A10+B10
0 A00+B00

Figure 7: Example: Adding two 1×5 images, A and B, where the maximum allowed image
height is 5.

3.7 Channel Addition and Subtraction

There are three functions for adding pixel channels of the same image together; cvpi -

channel add, cvpi color channels add, and cvpi all channels add. These functions use
vgColorMatrixNormal to perform the adding.

The function, cvpi all channels add, allows the user to specify a scalar for each chan-
nel, which channels to output to, and separate biases for each output channel.

R′

G′

B′

A′

←

SR SG SB SA

0 1 0 0
0 0 1 0
0 0 0 1

R

G

B

A

+

BR

0
0
0

→

RSR +GSG +BSB + ASA + BR

G

B

A

R′

G′

B′

A′

←

SR SG SB SA

0 1 0 0
SR SG SB SA

0 0 0 1

R

G

B

A

+

BR

0
BB

0

→

RSR +GSG + BSB + ASA + BR

G

RSR +GSG +BSB + ASA + BB

A

The functionality is similar for cvpi color channels add.

R′

G′

B′

A′

←

1 0 0 0
0 1 0 0
0 0 1 0
SR SG SB 0

R

G

B

A

+

0
0
0
BA

→

R

G

B

RSR +GSG + BSB + BA

R′

G′

B′

A′

←

SR SG SB 0
0 1 0 0
0 0 1 0
0 0 0 1

R

G

B

A

+

BR

0
0
0

→

RSR +GSG + BSB + BR

G

B

A

With the function cvpi channel add, the user selects which two channels to add and
the output channels. The effective adding formula is the same as that used by cvpi image -

add, but is performed by vgColorMatrixNormal. If the two input channels are the same,

17

then their scalars are added together. For example, adding channel R with channel G and
outputting to B and A, with B’s bias = 0 and A’s bias = 1.

1 0 0 0
0 1 0 0
1 1 0 0
1 1 0 0

1
5
10
20

+

0
0
0
1

→

1
5
6
7

3.8 Combining Images by Channel

The function cvpi image combine channelwise can combine two images, where the user
selects the channels to include from one image, and then the complement of the selected
channels are included from the other image in the output. The function works by using
vgColorMatrix to produce two new images where excluded channels are zeroed. Then the
two resulting images are added using cvpi image add. For example, given two one pixel
images, with the first two channels from the first image and the second two channels in the
second image are selected.

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1
2
3
4

+

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

5
6
7
8

→

1
2
7
8

3.9 Thresholding

CVPI contains five thresholding functions; cvpi channel threshold, cvpi image threshold,
cvpi channel threshold sector, cvpi image threshold sector, and cvpi image threshold -

adaptive mean. Thresholding is used to filter out information within a certain value range.
For cvpi channel threshold and cvpi image threshold, the user specifies value ranges,

whether to keep or remove pixels whose values are within the range while doing the opposite
for those outside the range, and what the replacing value will be for removed pixels. cvpi -

image threshold adds the additional option to specify whether channels are dependent or
independent. That is, if any channel in a pixel falls outside the threshold range, and if the
channels are dependent, then the pixel’s channels will be removed. If they are independent,
then a pixel channel is kept or removed regardless of whether the other channels were within
the threshold range.

The cvpi channel threshold function works by building an array to pass to vgLookup.
For channels that are not thresholded, their vgLookup functions are set to the identity
function array.

The functions cvpi channel threshold sector and cvpi image threshold sector thresh-
old a channel or image in sectors or blocks. The user must pass in a function that is used
to compute a statistic, such as the average, about the sector and the statistic is used as the
upper bound for masking or not masking, depending on what the user specifies. The lower
bound is zero. The image is divided into vgChildImage sectors. If the height or width does
not divide evenly, then their are additional sectors around the upper and right edges, whose
width or height are the modulo of the image and sector dimensions.

18

The function cvpi image threshold adaptive mean adaptively thresholds an image by
using vgConvolveNormalNoShift to find the local mean for each pixel. The user specifies

the N×N kernel size. Each kernel element has the value 1. The scale is
(

1

N

)2
. If the user

wants to keep pixels greater than the convolution results, then the resulting image from
the convolution gets subtracted from the original image. Else, if the user wants to keep
pixels less than the convolution results, the original image gets subtracted from the image
resulting from the convolution. The user can also specify an integer bias, which is passed
to cvpi image add as the bias parameter when finding the difference between the images.
Image values are saturated between 0 and 255, so negative values become zero and values
above 255 become 255. The image resulting from the difference can be used as a mask on
the original image; values that are zero are pixels that are to be removed by the threshold.
To create the masking image, values in the difference image are mapped to 0 if they are
non-zero, and mapped to 255 if they are zero. If the user wants removed pixels to be shown
in white, then the mask is added to the original image; else if the user wants removed pixels
to be shown in black, then the mask is subtracted from the original image. If the user wants
the image channels to be dependent on each-other; that is, only keep those pixels where all
of the channels survive thresholding, then the mean image is split into four separate images,
one for each color channel. The resulting images are then AND’ed together (see section 3.13)
and then turned into the masking image.

3.10 Masking

Masking one image with another can be accomplished easily with cvpi image add, by set-
ting the masking pixels to 255 and the non-masking pixels to 0, and then subtracting it
from or adding it to the image being masked. However, the user might want to keep
masking information inside an image channel, such as the alpha channel. The function,
cvpi image mask channel, adds or subtracts a channel from the other image channels using
vgColorMatrix. It is assumed that the masking channel is already set to the correct values.

If alpha is the masking channel and the mask is being added, then:

1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1

R

G

B

A

→

R + A

G+ A

B + A

A

If red is the masking channel and the mask is being subtracted, then:

1 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

R

G

B

A

→

R

G−R

B −R

A−R

3.11 Statistics

CVPI contains some statistical operations. Statistical operations, being reduction type op-
erations, cannot really utilize the GPU. However, some mapping functions, such as thresh-
olding, require results from statistical operations.

19

3.11.1 Average

CVPI provides two averaging functions; cvpi image mean arithmetic and cvpi image -

mean gpu. cvpi image mean arithmetic computes the arithmetic mean for each channel.
This operation is performed entirely on the CPU. The function is not heavily optimized
and could be improved on ARM CPUs supporting NEON SIMD. cvpi image mean gpu uses
convolution in a way similar to cvpi image add by averaging vertically adjacent pixels until
the resulting image is one pixel high. The image is reduced in height by 1 for each iteration.
A one-pixel image is produced by averaging horizontally adjacent pixels in the one-pixel
high image. The resulting value is not a true statistic but is close to the average. The exact
average is not always desired in computer vision and something like it may be good enough.
The function has a parameter to limit the number of iterations, returning an image with
dimensions: (input width) × ((height – number of iterations) or (1, if height – number of
iterations ≤ 0)).

3.11.2 Channel to Data

The function vgGetImageSubData, returns the data for an entire image [6]. cvpi channel2data

returns the data for just a single channel. The function works by reordering the channels
so that the desired data is in the alpha channel using vgColorMatrix. The image is then
copied to an image of type VG A 8. This will discard the non-alpha channels, and then the
alpha image is written to memory.

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

R

G

B

A

→

0
0
0
R

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

R

G

B

A

→

0
0
0
G

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

R

G

B

A

→

0
0
0
B

3.11.3 Max and Min

CVPI has three functions for determining a channel’s minimum and maximum values; cvpi -

channel max, cvpi channel min, and cvpi channel max min. All three functions pass the
input image and channel specifier to cvpi channel2data, and then use sequential searches.

3.11.4 Histogram and Cumulative Distribution

cvpi channel histogram, cvpi color channels histogram, and cvpi image histogram

create arrays in memory where the index represents an 8-bit color value, and the index entry

20

represent the number of times that value occurs in an image. cvpi channel histogram’s
data array can represent one of four channels: red, green, blue, or alpha. cvpi color -

channels histogram’s data is an array of 768 elements where the first 256 elements represent
red values, then next 256 elements represent green values, and the last 256 elements represent
blue values. cvpi image histogram adds another 256 entries, after the blue entries, for the
alpha channel values. This way channel data is kept contiguous and the data format is
consistent between these functions.

The functions cvpi channel cumulative distribution, cvpi color channels cumulative -

distribution, and cvpi image cumulative distribution, take the respective outputs of
cvpi channel histogram, cvpi color channels histogram, and cvpi image histogram,
and return the same type of data structures, except that it is a cumulative distribution. This
can be used for histogram equalization. Each entry is computed using the formula:

c(I) =
1

N

I
∑

i=0

h(i)

where h(i) is the value computed by the corresponding histogram function [15, p. 95].
These functions are used by cvpi channel histogram equalization, cvpi color channels -

histogram equalization, and cvpi image histogram equalization to create histogram
equalized images. First, the histogram h(i), and then the cumulative distribution c(I) are
computed. The output of the cumulative distribution function is converted to a VGubyte
array. If the user wants the array values scaled from 0 to 255, then the c(I) array is re-scaled
using the formula

h(v) = round

(

cdf(v)− cdfmin

(M ·N)− cdfmin

· 255
)

where M and N are the image dimensions, and cdfmin is the smallest positive value in
the cumulative distribution [16]. The c(I) array is then passed to vgLookup. For channels
not being operated on, the identity array is given.

3.12 Histogram Equalization

CVPI has three histogram equalization functions; cvpi channel histogram equalization,
cvpi color channels histogram equalization, and cvpi image histogram equalization;
and their sector counterparts; cvpi channel histogram equalization sector, cvpi color -

channels histogram equalization sector, and cvpi image histogram equalization -

sector. The first three functions use the same histogram and cumulative distribution statis-
tic for the entire image. The latter three functions partition the image, similar to cvpi -

channel threshold sector and cvpi image threshold sector, and apply their image-
wide counterparts to the sub-images. Adaptive histogram equalization is not implemented.

3.13 Logic Operations

CVPI can perform all binary logical operations: AND, NAND, OR, NOR, XOR, XNOR,
complement (\), inverse complement. The complement operation is the same as A&!B.

21

A B AND OR A\B XOR !(A\B) NOR XNOR NAND
0 0 0 0 0 0 1 1 1 1
0 1 0 1 0 1 1 0 0 1
1 0 0 1 1 1 0 0 0 1
1 1 1 1 0 0 1 0 1 0

For two inputs, there are 16 possible operations The operations B\A and !(B\A) can be
achieved by reversing the inputs. Operations that result in A, B, 1, or 0 are tautological.
The NOT operator is the same as applying the inversion array with vgLookup.

1. Allow the user to specify what values true and false outputs will be mapped to;
TC and FC. The user can specify, for the input images, whether 0 maps to true
and !0 maps to false, or the opposite.

2. Set all of A’s pixels to 1’s (TRUE) and 0’s (FALSE).

3. Set all of B’s pixels to 2’s (TRUE) and 0’s (FALSE).

4. Add the images.

5. Where TC = TRUE and FC = FALSE, use vgLookup to:

AND (intersection) set all 3’s to TC and non-3’s to FC.

NAND set all 3’s to FC and non-3’s to TC.

OR (union) set all 0’s to FC and non-0’s to TC.

NOR set all 0’s to TC and non-0’s to FC.

XOR (symmetric difference) set all 1’s and 2’s to TC and the rest to FC.

XNOR set all 1’s and 2’s to FC and the rest to TC.

COMPLEMENT (relative) set all 1’s to TC and the rest to FC.

INV. COMPLEMENT set all 1’s to FC and the rest to TC.

Figure 8: Algorithm for performing binary logical operations on images.

3.14 Morphology

CVPI provides five morphology functions; cvpi image dilate, cvpi image erode, cvpi -

image hit miss, cvpi image thin, and cvpi image thicken. These functions treat non-
zero values as true and zero values as false, or the opposite if the user specifies it; so input
images are essentially treated as binary images. Like the logic functions, the output is an
image consisting of two-value channels, one color being mapped to zero valued elements and
another color being mapped to non-zero valued elements.

Assuming that the user chooses non-zero values as true, cvpi image dilate causes non-
zero regions to expand. cvpi image erode causes non-zero regions to retract; i.e. causes

22

zero regions to expand. cvpi image hit miss detects corners. cvpi image thin and cvpi -

image thicken are similar to cvpi image erode and cvpi image dilate but rely on cvpi -

image hit miss.
For each of these functions, given an image of zeros and non-zeros, if non-zero values are

true, then non-zero values are mapped to 1 and zero is mapped to 0, else the opposite will
be done. A 3×3 binary convolution kernel is then mapped over the output [11, Morphology].

3.14.1 Dilation and Erosion

The convolution kernel for dilation and erosion is

1 1 1
1 1 1
1 1 1

The input image is converted to “binary”, and the kernel is applied [11, Morphology].
True values are mapped to the true color, and false values are mapped to the false color.
cvpi image erode uses cvpi image dilate with the false color and true color switched; and
with non-zero equal to false and zero equal to true if the user specified non-zero equal to
true, else the other way around if the user specified zero equal to true. Erosion is essentially
dilation with the binary input values flipped.

3.14.2 Thinning, Thickening, and the Hit-and-Miss Transform

The hit-and-miss transform uses four different convolution kernels:

0 1 0
0 1 1
0 0 0

 ,

0 0 0
0 1 1
0 1 0

 ,

0 0 0
1 1 0
0 1 0

 ,

0 1 0
1 1 0
0 0 0

The input image, after being converted to “binary”, is convolved with each of these kernels,
returning four different images, and then the outputs are or-ed together [11, Morphology].

For thinning and thickening, a hit-and-miss transform is performed on the input image.
In the thinning function, the logical complement function is taken between the original image
and the image returned by the hit-and-miss transform. In the thickening function, the logical
OR function is taken between the original image and the image returned by the hit-and-miss
transform [11, Morphology].

3.15 Data Points

Once the GPU has removed extraneous information from an image, the remaining data likely
needs to be processed by the CPU. Often it is the remaining pixel coordinates and not the
pixel values that are desired. With the function cvpi image coordinate table, CVPI can
return a coordinate table for the CPU to operate on. The user can specify whether the origin
is in the upper or lower left corner. cvpi image coordinate table outputs the input image
to memory and uses the CPU to create a table of non-zero pixels. The user can specify which
channels to check for non-zero data, unspecified channels are ignored. The function assumes

23

that the image format being used has its origin in the upper left corner, so to switch the origin
to the lower left corner, it subtracts the y coordinate from the image height. The function
assumes that every pixel could be non-zero, so sufficient space is allocated on the heap to
have a coordinate entry for every image pixel. The coordinate data is represented by a union
of a 32 bit unsigned integer with a two element array of 16 bit unsigned integers, with the
first element representing the x coordinate and the second, the y coordinate. cvpi image -

coordinate table returns a structure consisting of a pointer to an array of coordinates and
the length the array. If not all of the allocated memory is used then the memory allocation
is reduced to fit the coordinate table data.

3.16 YUVA to RGBA

Currently, there are no image formats that support YUVA, so the image must be converted
for human viewing. RGBA is commonly supported. This conversion must be done on the
CPU. The function cvpi avuy2argb converts an image in CPU memory to an RGBA image
in memory. The function cvpi image2argb is a simple wrapper around cvpi avuy2argb

that takes a VGImage, writes it to memory, and calls cvpi avuy2argb on it.

C = Y − 16
D = U − 128
E = V − 128

R = c l i p ((298 ∗ C + 409 ∗ E + 128) >> 8)
G = c l i p ((298 ∗ C − 100 ∗ D − 208 ∗ E + 128) >> 8)
B = c l i p ((298 ∗ C + 516 ∗ D + 128) >> 8)

Figure 9: Algorithm for converting YUV to RGB [18].

4 Logging

OpenVG has error logging. Errors can be returned using vgGetError(). However, it is not
possible to create new VG errors, so CVPI uses its own error logging facilities.

CVPI provides logging functions. The user can compile CVPI to write logs synchronously
with fprintf, asynchronously using POSIX threads, or not at all. The log writing loca-
tion can be changed with cvpi log file set and returned using cvpi log file get. The
default location is stderr. If the user wants to log to a file, then cvpi log file set

must be used at the beginning of the program and cvpi log file unset at the end of
the program. CVPI provides seven logging functions; cvpi log, cvpi log 1, cvpi log 2,
cvpi log 3, cvpi log 4, cvpi log 5, and cvpi log 6, though cvpi log is not intended for
direct use. The six numbered logging functions have corresponding formatting functions;
cvpi log format 1, cvpi log format 2, cvpi log format 3, cvpi log format 4, cvpi -

log format 5, and cvpi log format 6. This is used to standardize log formatting and
allow different log strings to be passed to a POSIX thread when performing asynchronous

24

logging. POSIX threads can only take a single argument that is normally a pointer. The
logging thread is passed a pointer to a structure containing the log format type, which tells
the thread what other structure parameters are to be printed. The structure contains an
fprintf formatting string, plus the arguments to the string. The log type tells the thread
what structure elements to pass to fprintf. The logging thread is detached after being
created.

5 Image Headers

CVPI has functions for writing image headers for Portable Bitmap (PBM), Portable Graymap
(PGM), and Bitmap (BMP). The PBM and PGM functions, cvpi pbm header write and
cvpi pgm header write, are wrappers around fprintf, which write to the specified file. The
BMP functions, cvpi bmp header alloc, cvpi bmp header write, and cvpi bmp header -

alloc write, create a bitmap version 4 header structure in heap memory and write it to
the specified file.

All bitmap header elements are type uint32 t, int32 t, uint16 t, or int8 t, and it
is 122 bytes long [10]. CVPI has support for multiple pixel encodings; RGB 565, BGR 565,
XRGB 8888, XBGR 8888, ARGB 8888, BGRA 8888, and RGBA 8888, where the letters specify the
channels and the numbers specify the number of bits per channel. CVPI’s cvpi avuy2argb

function requires ARGB 8888. CVPI BMP DEFAULT macro specifies the correct header type.
Again, this has only been tested on a little endian system and might not produce correct
results on a big endian system.

6 Video4Linux

CVPI has a set of functions for starting, stopping, and getting data from a camera. These
functions can be found in cvpi camera setup.h and cvpi camera setup.c in the tests

directory. cvpi camera setup.c is based off of the file capture.c.xml, which can be
found in the Video4Linux system documentation. cvpi camera setup.h has four functions;
cvpi camera create, cvpi camera start, cvpi camera read frame, and cvpi camera -

takedown. Camera capture itself is outside the scope of CVPI, but it is necessary for using
CVPI in many computer vision applications.

cvpi camera create requires the camera’s width, height, and format, as well as the
number of image buffers to allocate in which to dump raw image data. The function returns
a structure on the heap that gets passed to cvpi camera start, which starts the camera,
turning on the camera light if it has one. To act on camera input, the function cvpi -

camera read frame, runs a given function on the captured image. The function cvpi -

camera takedown, stops the camera and frees the camera information. Use the command
line function v4l2-ctl --all to get information about what cameras are on the system,
and v4l2-ctl --list-formats-ext to get information about supported image formats and
dimensions.

25

7 Building

CVPI was originally built using GNU Make. GNU Make is a standard build system on
Unix-like operating systems. It is a wrapper language around the command-line shell script
language, sh, allowing the programmer to automate build commands that could otherwise
be entered in the console. Linking to Broadcom’s libraries was non-trivial. Due to its trans-
parent method of operation, the Make utility did not introduce any non-obvious issues that
did not arise from the shell commands, making it easier to figure out the correct arguments
to give to the compiler and linker. However, for this project to be useful outside of the
Raspbian OS and the Raspberry Pi and for the project to be package-able, a different build
system was needed.

I considered GNU Autotools, CMake, and SCons. CMake appeared complicated and
there was little information on the Internet outside of CMake’s API documentation, so
that option was dismissed. I was initially reluctant to use SCons because it would require
anyone using CVPI to install SCons and, while widely available, is non-standard on Unix-like
systems. GNU Autotools is a standard set of tools that generates build scripts that can be
processed by sh and the Make utility, so that the user does not have to install Autotools
to build the project. GNU Autotools is well documented and widely tried and tested on
Unix-like systems. So the build system was switched to GNU Autotools.

The project was initially in a single flat directory. GNU Autotools forced the project
structure to become more in line with the GNU coding standards. Files such as, AUTHORS,
COPYING, ChangeLog, INSTALL, NEWS, and README, were necessary to conform to the standard.
Header files were relocated to the project’s include directory, C files to the src directory,
documentation to doc, etc. Unfortunately, Autotools proved difficult to configure correctly.
Autotools abstracts build commands by using the m4 macro system to create shell scripts.
The language can be difficult to debug. I decided to try SCons but keep the Autotools
configurations scripts.

The project currently only builds using SCons. The current SCons build is no more
flexible than the original Makefile build; however, the SCons build can be further improved
and made more portable. SCons has the full power of Python built in. SCons can also support
non-Unix-like systems such as Windows Mobile, something which GNU Autotools cannot
do easily [14]. Building with SCons is nearly as easy as building with Make. Unfortunately,
SCons has its own shortcomings, not shared by Autotools or CMake [5]. Autotools, CMake,
and make cannot be used for the same project; however, SCons can be used with those
build systems without interference, so it is likely that CVPI will continue to have two build
systems, one SCons and the other Autotools or CMake.

7.1 Compiler Options

CVPI has two levels of logging and three kinds of logging. CVPI must be recompiled to
switch between these. The C pre-processor variable CVPI CAREFUL if equal to 1 causes CVPI
to check the return values of all OpenVG commands with vgGetError. Without it, only
commands that necessarily have to allocate GPUmemory are checked, though every OpenVG
command could potentially cause a memory error [6, p. 29]. If CVPI LOGGING is set to 2,
then logging is done asynchronously; if it is set to 1, then logging is done synchronously; else

26

no logging is performed. CVPI could be built in different directories with different logging
settings and then the client code linked depending on the user’s needs. Little or no logging
makes the system harder to debug but reduces or removes the overhead incurred by logging.

CVPI contains some inline assembly with alternative C code. To use the assembly code,
set CVPI ASSEMBLY to 1.

There is also code specific to Broadcom’s EGL API that is necessary for EGL to run on
the Raspberry Pi. To enable the code, set the pre-compiler variable HAVE BCM HOST to 1.

8 Using CVPI

To use EGL, OpenVG, and CVPI, headers must be included in the correct order. Simply
including cvpi.h should prevent such errors. The EGL and OpenVG headers will be pulled
in with it.

There are a few parameters common to many of OpenVG’s image functions that for
CVPI to work correctly, must be set to certain values. The parameters are outputLinear,
outputPremultiplied, and allowedQuality. The parameter outputLinear must always
be OUTPUT LINEAR. The parameter outputPremultiplied must always be VG FALSE. The
parameter allowedQuality must always be VG IMAGE QUALITY NONANTIALIASED. When cre-
ating an image for use by a CVPI function, use CVPI COLOR SPACE.

For creating and destroying a new EGL instance, CVPI provides a simple method of
doing so. In the following code in Figure 10, cvpi egl surface pixmap native creator

and cvpi egl surface pixmap native destroyer are names of user provided functions,
see Figure 11. These functions are system dependent. The code creates an EGL instance
able to run CVPI on the Raspberry Pi.

c v p i e g l s e t t i n g s s e t t i n g s = c v p i e g l s e t t i n g s c r e a t e () ;

s e t t i n g s−>s u r f a c e p i xmap c r e a t e f un c t i on
= cvp i e g l s u r f a c e p i xmap na t i v e c r e a t o r ;

s e t t i n g s−>su r f a c e p i xmap de s t r oy func t i on
= cvp i e g l s u r f a c e p i xmap na t i v e d e s t r o y e r ;

s e t t i n g s−>r ende r ab l e ap i = cvp i e g l r e nd e r ab l e ap i op envg ;
s e t t i n g s−>c u r r e n t s u r f a c e t yp e = cvp i e g l s u r f a c e t ype p i xmap ;
/∗ add i t i o n a l s e t t i n g s may be r equ i r ed . . . ∗/
c v p i e g l i n s t a n c e in s t anc e = cvp i e g l i n s t a n c e s e t u p (s e t t i n g s) ;

/∗ OpenVG/CVPI code ∗/

cvp i e g l i n s t anc e t akedown (in s t anc e) ;
f r e e (s e t t i n g s) ;

Figure 10: Creating and taking down an EGL instance using CVPI’s interface.

27

/∗ the s u r f a c e p i xmap c r ea t e f unc t i on func t i on po in t e r type ∗/
typedef EGLNativePixmapType (∗ p ixmap funct i on po in te r) (c v p i e g l i n s t a n c e) ;

/∗ f unc t i on f o r s u r f a c e p i xmap c r ea t e f unc t i on func t i on po in t e r ∗/
EGLNativePixmapType
c vp i e g l s u r f a c e p i xmap na t i v e c r e a t o r (c v p i e g l i n s t a n c e e g l i n s t a n c e)
{

c v p i e g l s e t t i n g s e g l s e t t i n g s p = eg l i n s t an c e−>e g l s e t t i n g s ;

EGLint∗ pixmap id = mal loc (s izeof (∗ pixmap id) ∗ 5) ;
i f (pixmap id == NULL) {

return NULL;
}

pixmap id [0] = 0 ;
pixmap id [1] = 0 ;
pixmap id [2] = e g l s e t t i n g s p−>width ;
pixmap id [3] = e g l s e t t i n g s p−>he ight ;
pixmap id [4] = e g l s e t t i n g s p−>p ix e l f o rmat

| e g l s e t t i n g s p−>p ixe l f o rmat brcm ;

EGLint s t r i d e = c v p i e g l b y t e s p e r p i x e l (e g l s e t t i n g s p−>p ix e l f o rmat)
∗ e g l s e t t i n g s p−>width ;

eglCreateGlobalImageBRCM(e g l s e t t i n g s p−>width , e g l s e t t i n g s p−>height ,
pixmap id [4] , NULL, s t r i d e , pixmap id) ;

i f (! (pixmap id [0]) && ! (pixmap id [1])) {
i f (pixmap id != NULL) {

f r e e (pixmap id) ;
}
return NULL;

}
e g l i n s t an c e−>nat iv e da ta = pixmap id ;
return pixmap id ;

}

/∗ f unc t i on f o r s u r f a c e p i xmap de s t r o y f unc t i on func t i on po in t e r ∗/
EGLBoolean
cvp i e g l s u r f a c e p i xmap na t i v e d e s t r o y e r (c v p i e g l i n s t a n c e e g l i n s t a n c e)
{

i f (e g l i n s t an c e−>nat iv e da ta != NULL) {
EGLBoolean r e t v a l = EGL TRUE;
i f (! eglDestroyGlobalImageBRCM (eg l i n s t an c e−>nat iv e da ta)) {

f p r i n t f (s tde r r , ”eglDestroyGlobalImageBRCM returned EGL FALSE.\n”) ;
r e t v a l = EGL FALSE;

}
f r e e (e g l i n s t an c e−>nat iv e da ta) ;
e g l i n s t an c e−>nat iv e da ta = NULL;
return r e t v a l ;

} else {
return EGL FALSE;

}
}

Figure 11: Raspberry Pi surface pixmap functions.

28

9 Sample Program

The directory tests contains a sample motion detection program called cvpi sample -

motion detection. There are two wrapper shell scripts, cvpi sample motion detection-

data.sh and cvpi sample motion detection.sh. The former program gathers frames per
second performance data at different resolutions. The latter program is for user interaction,
allowing the user to select the resolution and number of frames to capture.

cvpi sample motion detection uses Video4Linux to capture image data from a web
camera. The image data returned from the camera is in YUYV format. CVPI converts the
image from YUYV to YUVA. The function cvpi image add is used to subtract the current
captured image from the previously captured image, and also subtract the previously cap-
tured image from the current captured image. The two resulting images are OR’ed together
using cvpi image logical or with non-zero channel values set to 0 and zero channel values
set to 255. The resulting image is subtracted from the captured image, so that values that
did not change between frames are zeroed and new values are kept. This image is then
output to a file. The file output is done asynchronously using a separate thread.

Data was gathered using cvpi sample motion detection data.sh, but the data was
somewhat scattered. The program was run in an ssh terminal at run-level 3, without the
X.Org server running, so there was little else running. Time samples were taken both inside
and outside the program’s image capture and processing loop, with the lesser of the two
samples taken as the frame rate. The average frame rate for all resolutions tested was
17.9 fps with a standard deviation 5.9, and a maximum of frame rate of 30.3 fps and a
minimum of 12.1 fps. There was no real correlation between the resolution and the frame
rate. The result could be due to the lack of a real time clock, the lack of a real time operating
system, or value overflow. Still, I think that the numbers are not entirely inaccurate, and
that you could expect process at around 16 to 18fps on average in simple vision applications.

10 Bindings

CVPI is written entirely in C so it should not be too difficult to create bindings in other
languages. Currently there are bindings being written for Chicken Scheme and C++ as part
of CVPI. There are already Java and Python bindings for OpenVG [12]. Chicken Scheme’s
compiler translates scheme to C code that then gets passed to a C compiler [3]. Making
bindings in Chicken Scheme for C functions and variables is quite easy. Scheme has the
advantage of a more powerful macro language and can be faster to write.

While C++ can use OpenVG and CVPI directly, but doing so does not allow for use
of C++ exception handling and memory management, so class interfaces to OpenVG and
CVPI were created.

The incentive for creating bindings as part of the project was due to the size of the
test code written in C and the amount of time spent debugging it. Lisp was my natural
choice. Lisp’s macro system allows code to be concise; common patterns that cannot be
turned into functions can be rolled into macros. Chicken Scheme has both Scheme and
Lisp-like macros systems. Traditional lisp macros can be written with minor changes using
ir-macro-transformer and er-macro-transformer, the former which implicitly renames

29

variables to prevent variable capture [3, ./man/4/Macros].

11 Tests

Currently, there is a single testing program that gets compiled by SCons in the tests

directory called cvpi tests. The main file, cvpi tests.c, runs a list of test functions.
A test returns a CVPI BOOL value, and the test function name and its return value are
printed. Some of the tests check that the output is correct but a number currently only
check that the function runs.

I plan to move further testing to Chicken Scheme, and only use C for testing that a
function runs. Chicken Scheme’s macro system should make for smaller test code and it
should be easier to do file IO in Chicken than in C. The Chicken code will certainly introduce
new bugs, so it cannot completely replace testing in C.

12 Coding Conventions

12.1 Naming

All global CVPI function and variable names start with cvpi. This is meant to serve the same
role as a name-space. Following the name-space is the the object type, and then the action.
Actions are verbs followed by adverbs. Object types are nouns followed by adjectives. While
this scheme does produce odd names from an English speaking perspective, but it creates a
logical classification system where the type is primary and action is secondary. Words are
separated by underscores. Common CVPI object type names are channel, color channels,
and image. Channel functions only act on one or two channels. color channel functions
act on the color channels, and image functions act on all four channels.

Conversion functions are named such that a ‘2’ separates the two types.
OpenVG extensions follow OpenVG’s naming convention of ‘vg’ followed by the rest of

the name in camel case.
Constant macros are in all caps. General purpose function macros are written in lower

case. Boolean values and tests are in upper case. Enumerations are in lower case. All
structure and unions are type-defined or have type-defined pointers to them.

12.2 Code Structure

The overall CVPI project structure follows the GNU coding standards required by GNU
Autotools [4].

All functions that allocate data on the heap or in GPU memory have a function local jump
point for freeing memory. Every function has its own definition of the macro TAKEDOWN, and
every function has the variable BADSTATE. This is used to implement a kind of function level
deconstructor. At the beginning of the function, all heap pointers are initialized to NULL,
return values are initialized, and all OpenVG “objects” are set to VG INVALID HANDLE.
After every OpenVG function, vgGetError is called; and after every heap memory alloca-
tion, the return value to checked for NULL. If memory is freed outside of TAKEDOWN,

30

the variable is set to NULL or VG INVALID HANDLE. If an error value is returned, BAD-
STATE is set to true and the function jumps into its TAKEDOWN code. If a memory
variable is non-NULL, it is freed, and if BADSTATE is true, then the return value is set to
the function’s error return value, which is VG INVALID HANDLE for functions that return
VGImage’s, NULL for functions that return heap pointers, or else it is function specific. The
pre-compiler condition CVPI CAREFUL allows the user to turn off error checking of OpenVG
functions that do not necessarily involve memory allocation. According to the OpenVG
specification, every OpenVG function can throw a memory error; however, memory errors
are likely to only come from vgCreateImage and vgDestroyImage, and checking for errors
after every OpenVG call can needlessly slow down program execution.

All included headers are surrounded by ifndef include guards. All header files, if defined
more than once, will print a compiler message.

12.3 Optimization

The code was written with the target platform being the ARMv6 CPU. Where possible,
loops count down to zero. When comparing to zero on the ARM CPU, a processor flag is
set. Overall, this should result in fewer instructions per cycle [8, p. 180].

The GNU compiler has intrinsic C support for ARM’s NEON SIMD extensions; however,
ARMv6 does not have NEON instructions but it does have other parallel instructions that
GCC does not have intrinsic C support for. ARMv6 chips and higher have instructions
for parallel computations on two 16-bit and four 8-bit values in normal registers. If these
instructions are intrinsically supported, they would be in the C header arm acle.h [2, p. 14].
GCC does not have this header and the Clang compiler currently has an incomplete version.
Some inline assembly instructions were used where GCC was unlikely to optimize correctly,
specifically in the cvpi avuy2argb function. Single ARM instructions are capable of multiple
actions. Many instructions have a conditional flag that will cause the instruction to be
executed conditionally, and one of the inputs passes through a barrel shifter before being
passed to the operator [8, p. 37].

The function cvpi image coordinate table returns a coordinate table consisting of
pairs of unioned uint16 t, and OpenVG writes images to memory as a packed block with
four 8-bit values per pixel. This allows the user to take advantage of ARMv6’s parallel
instructions. CVPI defines the union type, cvpi pixel, with an array accessor and channel
index aliases cvpi pixel red, cvpi pixel green, cvpi pixel blue, cvpi pixel v, cvpi -

pixel u, cvpi pixel y, and cvpi pixel alpha. This allows the user to treat an image in
memory as if it were a two dimensional array, with the pixels being one dimension and the
channels being the other dimension.

12.4 C99 and other C Things

CVPI relies on some lesser known aspects of C as well as functionality introduced in C ’99.
CVPI requires that the user be familiar with function pointers. The EGL setup functions
require that the user be able to create functions and pass in pointers to those functions to
fill in the template.

31

C99 was chosen because variadic macros were desired. Variadic macros are function
macros that can take varying numbers of arguments. The following example is a wrapper
around fprintf in cvpi base.h.

#define c vp i l o g 1 (text , . . .) \
(c vp i l o g (c vp i l o g f o rma t 1 (t ex t) , ## VA ARGS))

Another C99 features that is used in CVPI is designated initializers. Designated ini-
tializers are shorthand notations for initializing array member elements. An example from
cvpi image functions.c shows an array being initialized with the first element being ini-
tialized to a dynamically calculated value and the other 255 elements being initialized to
another dynamically calculated value.

VGubyte l o g i c a r r a y [2 5 6] =
{ [0] = f a l s e c o l o r , [1 . . . 255] = t r u e c o l o r } ;

13 Documentation

Documentation is currently in the header files. I tried using Doxygen; however, I found
Doxygen too inflexible to allow for good exposition. Doxygen forces the generated documen-
tation to take a certain structure where header file entities are sorted by type; functions on
one page, enumerations on another, etc. This form may be appropriate for some projects,
but the CVPI code is more understandable if related function and type documentation are
located next to each-other because there are a lot of enumerations and typedef’s that are only
used by one or a few functions. This is something that I could not achieve with Doxygen.

14 Project Statistics

I tracked project time in Emacs using Org mode, though I forgot to do so on a number
of occasions. I would estimate the project time so far to be over 200 hours of coding and
documenting. This does factor in time reading the OpenVG and EGL specifications, reading
Broadcom’s code, or any other engagements necessary to complete the project. I spent about
30 hours documenting, and so at least 170 hours programming.

A simple count of the number of lines per file, excluding blank lines and not including
build files, puts the number of lines of code and comments in the include directory at 978,
5490 in the src directory, 5275 in the tests directory, 61 in the extras directory, and 1455
in the bindings directory, for a total of 13259 lines of code and comments.

15 License

The code is licensed under LGPLv3 (GNU Lesser General Public License version 3). This
allows the code to be legally linked to code that is under any license, so that anyone can
use CVPI as they desire. The LGPL establishes well defined and understood usury rights.
Creating a new license, using a lesser known license, or putting the code in the public

32

domain would have made it more difficult for people, legally bound, to safely utilize the
code, as its legal status would be less understood. The LGPL also adds some protection
against software patents under section 11 of the GPLv3 (GNU General Public License version
3). I am completely opposed to patents, as they give legal claim over the use of ideas,
which are naturally non-scarce and non-rivalrous; i.e. things that can be duplicated and
shared without limit and without deprivation; and unlike non-disclosure agreements in which
parties agree not to use or publish certain knowledge outside of specified confines, a patent
also restricts how third parties can use their own physical property. While I believe that
copyright also commits similar offense, copyright is automatic and public domain status
might not everywhere be recognized. Copyleft nullifies copyright in a way that is widely and
legally recognized.

References

[1] ARM. ARM Compiler toolchain Assembler Reference, 4.1 edition, 2011.
infocenter.arm.com/help/topic/com.arm.doc.dui0489c/DUI0489C_arm_

assembler_reference.pdf.

[2] ARM. ARM C Language Extensions, 1.1 edition, November 2013. infocenter.arm.

com/help/topic/com.arm.doc.ihi0053a/IHI0053A_acle.pdf.

[3] Chicken wiki, January 2015. wiki.call-cc.org/.

[4] Free Software Foundation, Inc. Gnu coding standards: The release process, December
2014. www.gnu.org/prep/standards/standards.html#Managing-Releases.

[5] Gentoo Foundation, Inc. Scons, January 2015. wiki.gentoo.org/wiki/SCons.

[6] Khronos Group Inc. OpenVG Specification: Version 1.1, December 2008. www.khronos.
org/registry/vg/specs/openvg-1.1.pdf.

[7] Khronos Group Inc. Khronos Native Platform Graphics Interface: EGL Version 1.4,
December 2013. www.khronos.org/registry/egl/specs/eglspec.1.4.pdf.

[8] J. A. Langbridge. Professional Embedded ARM Development. John Wiley & Sons,
Indianapolis, IN, 2014.

[9] H. Lynn. An image-processing robot for robocup junior, August 2014. www.

raspberrypi.org/an-image-processing-robot-for-robocup-junior/.

[10] Microsoft. BITMAPV4HEADER structure, 2015. msdn.microsoft.com/en-us/

library/windows/desktop/dd183380%28v=vs.85%29.aspx.

[11] Robert, Perkins, Walker, and Wolfart. Hypermedia image processing reference, 2000.
homepages.inf.ed.ac.uk/rbf/HIPR2/wksheets.htm.

[12] Raspberry pi videocore apis, December 2013. elinux.org/Raspberry_Pi_VideoCore_
APIs.

33

infocenter.arm.com/help/topic/com.arm.doc.dui0489c/DUI0489C_arm_assembler_reference.pdf
infocenter.arm.com/help/topic/com.arm.doc.dui0489c/DUI0489C_arm_assembler_reference.pdf
infocenter.arm.com/help/topic/com.arm.doc.ihi0053a/IHI0053A_acle.pdf
infocenter.arm.com/help/topic/com.arm.doc.ihi0053a/IHI0053A_acle.pdf
wiki.call-cc.org/
www.gnu.org/prep/standards/standards.html#Managing-Releases
wiki.gentoo.org/wiki/SCons
www.khronos.org/registry/vg/specs/openvg-1.1.pdf
www.khronos.org/registry/vg/specs/openvg-1.1.pdf
www.khronos.org/registry/egl/specs/eglspec.1.4.pdf
www.raspberrypi.org/an-image-processing-robot-for-robocup-junior/
www.raspberrypi.org/an-image-processing-robot-for-robocup-junior/
msdn.microsoft.com/en-us/library/windows/desktop/dd183380%28v=vs.85%29.aspx
msdn.microsoft.com/en-us/library/windows/desktop/dd183380%28v=vs.85%29.aspx
homepages.inf.ed.ac.uk/rbf/HIPR2/wksheets.htm
elinux.org/Raspberry_Pi_VideoCore_APIs
elinux.org/Raspberry_Pi_VideoCore_APIs

[13] Schimek, Dirks, and Verkuil. Video for linux two api specification, 2006. v4l.

videotechnology.com/dwg/v4l2.html.

[14] Svartalf. Autotools vs. cmake vs. scon, May 2014. stackoverflow.com/questions/

4071880/autotools-vs-cmake-vs-scons#answer-18291580.

[15] R. Szeliski. Computer Vision: Algorithms and Applications. Springer, London, 2011.

[16] Wikipedia. Histogram equalization — Wikipedia, the free encyclopedia, 2015. [Online;
accessed 01-April-2015].

[17] Wikipedia. Sobel operator — Wikipedia, the free encyclopedia, 2015. [Online; accessed
01-April-2015].

[18] Converting between yuv and rgb, April 2010. msdn.microsoft.com/en-us/library/

aa917087.aspx.

34

v4l.videotechnology.com/dwg/v4l2.html
v4l.videotechnology.com/dwg/v4l2.html
stackoverflow.com/questions/4071880/autotools-vs-cmake-vs-scons#answer-18291580
stackoverflow.com/questions/4071880/autotools-vs-cmake-vs-scons#answer-18291580
msdn.microsoft.com/en-us/library/aa917087.aspx
msdn.microsoft.com/en-us/library/aa917087.aspx

	Introduction
	Motivation
	Existing Software Architecture
	CVPI Interface and Library

	CVPI EGL Interface
	CVPI Image Library
	OpenVG API
	CPU/GPU Memory Transfer
	Copying Images
	Pixel Vector Matrix Multiplication
	Convolution
	Value Mapping

	Filters
	Magnitude

	OpenVG API Wrappers
	YUYV to YUVA
	Color to Black and White
	Image Addition and Subtraction
	Channel Addition and Subtraction
	Combining Images by Channel
	Thresholding
	Masking
	Statistics
	Average
	Channel to Data
	Max and Min
	Histogram and Cumulative Distribution

	Histogram Equalization
	Logic Operations
	Morphology
	Dilation and Erosion
	Thinning, Thickening, and the Hit-and-Miss Transform

	Data Points
	YUVA to RGBA

	Logging
	Image Headers
	Video4Linux
	Building
	Compiler Options

	Using CVPI
	Sample Program
	Bindings
	Tests
	Coding Conventions
	Naming
	Code Structure
	Optimization
	C99 and other C Things

	Documentation
	Project Statistics
	License

