orobrLem

Mobile and embedded computing platforms are increasingly
being used for computer vision tasks. Currently, these
platforms either do all computation on the CPU or offload the
processing to another computer. Present computer vision
libraries, such as OpenCV, do not utilize the GPUs on these
platforms. For GPU processing, OpenCV, requires that the GPU
support CUDA or OpenCL. Mobile GPUs do not intrinsically
support these languages. However, many mobile GPUs have
built-in support for the C APIs, OpenGL ES and OpenVG.
OpenGL ES is a 3D graphics engine, and OpenVG a 2D vector
and raster graphics engine. OpenVG is easy to use and has
built-in functionality for photo manipulation that makes it an
ideal platform for creating a computer vision system.

Getting OpenVG and OpenGL ES to run, requires EGL. EGL
creates the rendering environment. However, getting EGL
setup and running correctly is non-trivial and device dependent,

which is why CVPI also provides an interface to simplify this

process.

OperVG

OpenVG provides methods for filtering image data.

vgConvolve vgSeparableConvolve vgGaussianBlur
w—1h—1

I(x,y) =s S:S:k(w—z—l,h—] —DP(x+1—Sz,y+J—5y) | +0
1=0 7=0
Convolution maps a kernel matrix, k, to image P for every pixel, (z,y), resulting in image I. Kernel and image indexing start
from 0. wand h are the kernel's width and height. s, s,, s,, and b are constants. Image channels are convolved independently.

vgLookup vgLookupSingle

COMmMpP

ese functions map image channel values using lookup tables. Eac R i R/ R/

;:rhhanne]i car: hold anp8—bitgva|:e betl/veeln 0 and §5|5 thotolELllp usEs ah /G\ E /G’\ /G/\

.cIifFerent lookup table, f, per.channel. ngookupS.Single. maps a single B E} B’ C — B,

image channel, C, to a 32-bit, 4-channel value using a single lookup table. N

This is done for every pixel in the image. \A/ & \A// \A’)

vgColorMatrix

(I (1 5 9]3\ (R\ (17 (1f%+56¥+93—kﬂb4+17\

G’ 2 6 10 14 G 18 2R+ 6G + 10B + 14A + 18

“13 7 11 15 T 7 | 3R+7G +11B + 154 + 19

B’ B 19
\4) \4 8 12 16/ \u/ \20/ \4R+8G+12B+164+20)

vgColorMatrix applies a 4x4 matrix to each image pixel, multiplying the 4x4 matrix by the 4x1 pixel color vector.
Another 4x1 vector is added to the product.

CcCONTACT

Devin Homan
devinwh7@gmail. com
907-862-0777
github.com/dwhoman/CVPI

((CFCIr CNCCS

Khronos Group Inc. OpenVG Specification: Version 1.1, December 2008. www.khronos.org/registry/vg/specs/openvg-1.1.pdf.

Khronos Group Inc. Khronos Native Platform Graphics Interface: EGL Version 1.4, December 2013. www.khronos.org/registry/egl/specs/eglspec.1.4.pdf.
Robert, Perkins, Walker, and Wolfart. Hypermedia image processing reference, 2000.homepages.inf.ed.ac.uk/rbf/HIPR2 /wksheets.htm.

Raspberry pi videocore apis, December 2013. elinux.org/Raspberry Pi VideoCore APIs.

Schimek, Dirks, and Verkuil. Video for linux two api specification, 2006. videotechnology.com /dwg/v4I2. html.

R. Szeliski. Computer Vision: Algorithms and Applications. Springer, London, 2011.

Wikipedia. Histogram equalization — Wikipedia, the free encyclopedia, 2015. [Online; accessed 01-April-2015].

Devin Homan

CVPI Image Functions
OpenVG Function Wrappers

vgConvolveNormal vgConvolveNormalNoShift
vgConvolveNoShift vgColorMatrixNormal

OpenVG's convolution and color matrix functions scale input pixel values to be between 0 and 1. These *Normal functions scale pixel
values from 0 to 255. OpenVG's convolution operators shift pixel values towards the origin, *NoShift functions correct for the shift.

Image Processing Functions

The choice of what functionality to implement was largely based on Robert, Perkins, Walker, and Wolfart's Hypermedia Image
Processing Reference. Only a selection of functions that CVPI provides are listed.

cvpl_ image add
Ci,j = S - (CZ . Az’,j S b - Bi,j) 4+ 1

The function cvpi_image_add can add and subtract images, A and B, of like dimensions resulting in image C. s, a, and b are
numeric constants, ¢ is a constant 4x1 vector. The function combines the two images in 1-pixel horizontal strips, uses vgConvolve
to add adjacent rows, and then copies every other row into the return image. CVPI also has functions for adding and subtracting
channels of the same image, utilizing vgColorMatrix.

CVpl yuyv2yuva
Many low-cost USB web cameras return data in YUYV format: that is, captured pixels are horizontally paired, sharing U and V
channels while having their own Y channel. Each channel is 8-bits. cvpi_yuyv2yuva splits these combined pixels into separate
YUVA pixels, with the A (alpha) channel set to 255. The YUVA image is twice the width but the same height as the YUYV input.
The function utilizes vgColorMatrix for channel reordering.

cvpl 1mage magnitude
When two im;g,e convolutions are performed on the same image, such as a Sobel operation, the magnitude between the two resulting
images is desirable. cvpi_image_magnitude calculates the magnitude value between pixel channel values in the same locations
within the two images. The input data is scaled such that the sum of the squares of the data does not exceed 255. The data is
then re-scaled after the square root is taken. Precision is decreased but data points can stay within the 8-bit color channels.

cvpli _image threshold cvpi image threshold sector
cvpl_image threshold adaptive mean

Thresholding is used to filter out information within a certain value range. cvpi_image_threshold allows the user to specify two
range values and whether to keep or remove information within the range, while doing the opposite for values outside the range.
cvpi_image_threshold_sector partitions the image and finds a statistic for the partition, such as the mean, using a user supplied
function. cvpi_image_threshold_adaptive_mean uses vgConvolve to find the local mean for each pixel. The resulting image is
then subtracted from the original.

cvpli 1mage logical *
CVPI can pem)rm any Iogical_operation between two images: AND, OR, NOR, XOR, XNOR, NAND, Complement, Inverse
Complement. Channel values are treated as binary, depending on the function's parameters, 0 could be treated as false and non-zero
treated as true. True values in one image are set to 1, and they are set to 2 in the other image. False values are set to 0. The two
images are added. The resulting image has channel pixel values of 0, 1, 2, and 3. A lookup table is used to perform the particular
logical operation. True and false values are mapped to user defined output values.

Morphology

Image morphology works similarly to the logical operations; channel values are treated as true or false. CVPI has functions for
dilating and eroding images; increasing and decreasing regions with true values. cvpi_image_dialate and cvpi_image_thicken
increase true regions, while cvpi_image_erode and cvpi_image_thin decrease true regions.

cvpl _1mage histogram equalization
Histogram equalization is used for image contrast adjustment. CVPI creates a per-channel histogram table and then a cumulative
distribution table from the histogram table. The table is passed to vgLookup to change the channel values, image wide.

cvpl_image coordinate table

Once the data has been filtered, the data coordinates might be desired for CPU processing, such as for a regression.
cvpi_image_coordinate_table returns an array of coordinate pairs for the locations of non-zero values.

cvpl_avuy2argb
There are no programs available for viewing YUVA; so the data is transformed to red, green, and blue. CVPI can
create a BMP (Bitmap) header for ARGB. Bitmap is a widely supported image header specification.

Wikipedia. Sobel operator — Wikipedia, the free encyclopedia, 2015. [Online; accessed 01-April-2015].
Converting between yuv and rgb, April 2010. msdn.microsoft.com /en-us/library/aa917087.aspx.

@creative
commons

UTCr For Mobile and
Ul S | O) Embedded Platforms

EGL Interface

Software Stack CVPI provides a template interface

cvpl _egl settings check
cvpi_egl_settings_create creates a structure of settings information that
can be passed to cvpi_egl_settings_create or to
cvpi_egl_settings_check. cvpi_egl_settings_check is used to check for
GOU cvpl_egl instance setup
cvpl egl instance_ takedown
cvpi_egl_instance_setup creates a cvpi_egl_instance structure that can be passed to
cvpi_egl_instance_takedown. The structure gives the take-down procedure the information
rendering window requires calling device-specific routines that cannot be accounted for. These routines return data
pointers that EGL interprets as EGLNativePixmapType or EGLNativeWindowType. The EGL interface requires that the
user pass in function pointers that, when executed, create and destroy the native type, respectively for setup and take-
down. The Raspberry Pi has multiple ways of creating EGLNativeWindowType and EGLNativePixmapType.

for setting up and taking down EGL.

faulty settings in the structure. Documentation and error reporting is lacking on
needed to undo the setup procedure. The cvpi_egl_instance_setup template performs a set of steps common to
Raspberry Pi's function documentation is sparse, and the EGL standard does not specify native type creation

cvpl egl settings create
Raspberry Pi's EGL implementation.
setting up EGL. EGL API implementation specific steps are included using conditional macros. However, creating the
methods. CVPI provides example code for EGLNativePixmapType.

Interactive Demo

The computer running is a stock Raspberry Pi model B. Itis
using a web-camera to capture video. The program interfaces
with the camera using Video4Linux. The frames are then
processed by CVPI. CVPI is performing simple motion detection
by subtracting the newest frame with the one previous, and
using the result to mask the current frame. Unchanged channel
pixels are set to 0. Changed channel pixels are set to the
current value, so stationary objects are removed. CVPI
converts the image to RGBA and adds a Bitmap header. The
program used to display the frames, feh, cannot read Bitmaps,

so ImageMagick convert is used to convert frames to JPEG. For

each cycle, the program retrieves 51 frames from the camera,
performs the motion detection (resulting in 50 images), saves
the images, converts the saved images, and displays them at
10 frames per second.

LGPLCZ

(0 @

Free as in Freedom

