
University of Alaska, Anchorage

CSCE A470

Capstone Project

A novel probabilistic
language-based CAPTCHA

system

Author:
Teslin Roys

Supervisor:
Dr. Saif al Zahir

March 2015

Acknowledgements

Many thanks in particular to my supervisor, Dr. Saif al Zahir for his
persistent help in motivating and focussing the work. I would also like to

thank all my family and friends for dinner, music, conversation and support
which is ever appreciated when the work is trying. Since I would rather not
forget anyone in these acknowledgements I won’t list anyone by name, but
if you ever gave me any kind of encouragement (whether you knew it or

not) then thank you.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Organization . 4

2 Aims of a CAPTCHA system 5
2.1 Security features . 5
2.2 Usability . 6
2.3 Philosophy . 6

3 Overview of existing approaches 9
3.1 Optical text recognition CAPTCHAs 9
3.2 Language-based or mixed approaches 11
3.3 Other approaches . 14

4 Description of proposed method 15
4.1 Principle . 15
4.2 Choosing basis (match) phrases 16
4.3 Problem structure . 17
4.4 User choice mechanism . 18
4.5 Passing/failing and multiple attempts 20
4.6 Candidate formation . 21
4.7 Feedback mechanism . 21
4.8 Finding synonyms . 23

2

5 System evaluation 24
5.1 Criteria . 24
5.2 Security analysis . 25
5.3 Usability analysis . 27

6 Development details 28
6.1 Implementation and technologies used 28
6.2 Major system components and timeline 30
6.3 Description of development approach 31

7 Conclusions 33
7.1 Comparing results . 33
7.2 Implications and summary . 34

8 Appendix A: Main authentication sequence UML 35

9 Appendix B: Sample code 36
9.1 Serverside (Node.js) . 36
9.2 Clientside (Typescript/HTML5) 41

10 Appendix C: Test data 46

List of Figures

1 A challenge generated by the reCAPTCHA system, described
in Von Ahn et. al. [2008]. The user must type in the charac-
ters (i.e. 224) they see in the image to proceed. 5

2 An example of an EZ-Gimpy image. Photo courtesy of the
Captcha Project at Carnegie Mellon University. 9

3 An example of a simulated handwritten test. Rusu and Govin-
daraju [2004] . 10

4 A sample prompt/answer for the SemCAPTCHA system. (Lupkowski
and Urbanski [2008]) . 11

5 A prompt for the EGGLUE system. 12
6 A sample prompt for the What’s Up CAPTCHA system. . . . 13

3

7 A visualisation of a small part of the WordNet database (Ver-
cruysse [2010]). Words connected directly to the same node
in the graph share a definition (i.e. compose a synset). Red
nodes identify nouns, orange nodes are verbs. 17

8 Highlighted region m′ is the area [CKR]. 19
9 The states a phrase can go through in the system. 23
10 An example testing session. 24
11 Distribution of attempts over all sessions of preliminary testing

with humans. 26
12 Distribution of attempts over all sessions of preliminary testing

versus a brute force attacker. 27
13 An early alpha of the GUI in debug view, showing distances

between vertices. 29
14 A development timeline (Gantt) chart. 31
15 Interaction between server, clients, and stored data. 32
16 Results in context of comparable recent CAPTCHA designs

from the image recognition family. 33

List of Tables

1 Threshold values for the system. 20
2 Example data for a candidate phrase database of n phrases. . 21

4

Abstract

In this paper, we argue that the notion of a CAPTCHA (Com-

pletely Automated Public Turing Test to tell Computers and Humans

Apart) system which sorts humans from machines with perfect ac-

curacy is not merely technically challenging but tightly connected to

the philosophy of AI and therefore fraught. We embrace Von Ahn

et. al. [2003]’s suggestion that new CAPTCHA designs be based

upon difficult artificial intelligence problems, but we further recom-

mend that new designs target areas of lesser development absent the

expectation that an optimal solution will be found. CAPTCHA sys-

tems are typically primarily visual, characteristically challenging a

user to identify a string of alphanumeric characters in an image. Many

CAPTCHA systems in everyday practical use specifically employ the

optical text recognition (finding characters in an image) approach, but

we observe that this approach is not robust against increasingly well-

developed attacks in the literature. We review newer methods, based

on either image recognition or language semantics. We design a new

CAPTCHA system in the latter category, but unlike existing examples

of either type our system is not based upon a static, manually collected

database and is not susceptible to rudimentary random guess attacks.

Preliminary testing shows near-perfect acceptance of human users by

the system, where comparable alternatives in the image recognition

family have more inconsistent results. Using a dynamic social feed-

back mechanism where users score new phrases, this system is capable

1

of identifying new synonyms and could also offer a measure of quality

for automatically generated text.

Keywords: CAPTCHA, semantics, syntax, language, AI, philosophy

2

1 Introduction

1.1 Motivation

A CAPTCHA, sometimes called a Human Interactive Proof, is a variation

of the Turing test (Turing [1950]) in which a system authenticates users as

human by verifying solutions to a problem which is in principle straightfor-

ward for humans to solve but difficult for current computers or algorithms.

In general, preventing undesired (automated) use of Web services is an ap-

parent security need which CAPTCHAs attempt to satisfy. Mehra et al.

[2011] argues that CAPTCHAs also present a viable means of mitigating the

damage done by DoS (Denial of Service) attacks. There seems to be signif-

icant benefit in introducing new CAPTCHA techniques. As Von Ahn et al.

[2003] suggest, the introduction of challenging AI problems for CAPTCHA

mechanisms either leads to more secure systems or encourages advances in

the field of AI. In addition, we observe there is an advantage in leveraging

problem-solving abilities of human users to generate external benefits. For

example, the reCAPTCHA system described by Von Ahn et. al [2008] uses

results from users to help solve hard character recognition problems beyond

the abilities of present algorithms.

A large family of CAPTCHA methods are characterized by taking a string

of characters, visually transforming/distorting it, and asking the user to re-

spond with the original string. Lupkowski et. al [2008] calls these optical

character recognition (OCR) based methods, but we prefer the term optical

3

text recognition. This is because as Chellapilla et. al. [2004] note, for the

single-character problem, computers in fact have better results than humans.

Systems in this family instead often rely on the difficulty of segmenting an

image that represents a longer piece of text into its constituent characters.

However, many of the most-used optical text recognition based systems

have been broken (Baecher et. al. [2011], Yan et. al. [2007], Yan et.

al. [2008], Moy et. al. [2004], Mori et. al. [2003], Chellapilla et. al.

[2004]). For example, Baecher et. al have found means to subvert versions of

the reCAPTCHA system, which Baecher et. al still consider comparatively

robust, with a success rate as high as 12.7%. This also indicates that new

approaches are desirable.

1.2 Organization

The remainder of this paper will discuss three main topics. In chapter 2,

we discuss the aims of a CAPTCHA system in general. In chapter 3, we

present a review of a selection CAPTCHA approaches. In chapters 4-7, we

discuss the proposed new probabilistic language-based CAPTCHA system.

This system promises to provide some benefits to natural language processing

in addition to offering a practical CAPTCHA solution. We will discuss some

of the tradeoffs of the proposed method and an overview of its design.

4

2 Aims of a CAPTCHA system

2.1 Security features

Figure 1: A challenge generated by

the reCAPTCHA system, described in

Von Ahn et. al. [2008]. The user must

type in the characters (i.e. 224) they

see in the image to proceed.

It seems that a CAPTCHA system

should ideally be efficient with re-

spect to the time spent to generate

a problem relative to the time spent

by an attacker to solve it. In other

words, there must seemingly be an

asymmetry in the capability of al-

gorithms to generate problem cases

with solutions, and the capability

of algorithms to solve an arbitrary

case. This would appear particularly

true when the goal is to stymie DoS-

style (Denial of Service) abuse, as

Mehra et al. [2011], because the aim may be to impose a computational

cost on the attacker.

In addition, there must be an asymmetry between the algorithmic solver

and a human user’s ability to concoct a solution. This is apparently the

case with OCR (optical character recognition) based systems, where the dis-

torting transformations of typical CAPTCHA methods are more difficult to

arbitrarily reverse than to apply. Nonetheless, it seems as though humans

5

can find such a reversal trivial.

2.2 Usability

In order to gain any traction as a practical solution, we must expect that a

provided CAPTCHA problem be not only less difficult for a human to solve

than a computer, but require little time or effort on the part of the user.

In addition, we would hope that the system’s interface is readily accessible

and understandable by most human users. A balance must therefore be

struck between complication of the scheme in order to befuddle machines,

and streamlining to ensure ease of use by humans. The hope, of course, is

that these are at least somewhat orthogonal goals.

2.3 Philosophy

It further reflects on our goals for any CAPTCHA system to hypothesize

about a CAPTCHA which could sort humans and machines with perfect

certainty. If machines and humans have fundamental and irreconcilable dif-

ferences in the tasks and problems that they are able to solve, then research

should be directed at identifying these fundamental differences and exploiting

them.

It is therefore reasonable to make a foray into the philosophical to ask

whether one can set such a task which a machine finds not only difficult, but

impossible, so that a machine will never be able to compose an answer. Of

6

course, even hypothetically we are not simply defining a completely impos-

sible task – to the contrary, a human must still be able to accomplish it. To

suppose such a task to exist, we must suppose some unique and qualitative

(rather than quantitative) difference between human and machine intelli-

gence in principle. In other words, it posits a semantic gap (in the sense

Von Ahn et al. [2003] describe it) which is in fact not incremental in nature

but dramatically abrupt.

The existence of this kind of inherent qualitative difference between mind

and machine is proposed by multiple authors including Penrose [1999] and

Searle [1980]. The most resilient such claims frequently entail an appeal

to the problem of syntax versus semantics. In some way, an objection to

the principle of machine intelligence is usually offered on the grounds that a

machine cannot perceive semantics. But a hidden premise is also that the

distinction between syntax and semantics is rigorous enough to allow us to

draw such a line.

Penrose’s argument is particularly interesting from a computational logic

point of view, deriving from the idea of Gödel sentences. Gödel [1931] showed

that given an axiomatic language of sufficient complexity, there will be true

sentences in the language which cannot be proven. It is known from Turing

[1936] that equivalently some problems do not have a decision procedure

(undecidable problems). It is from our seeming ability to construct these

Gödel sentences (or similarly, concoct undecidable problems) that Penrose

argues we humans have special capabilities that machines do not.

7

However, this argument alone seems less than convincing. As McCarthy

[1990] points out, it is possible to create a program in LISP which can con-

struct Gödel sentences of its own once provided with some confidence inde-

pendent of the formal derivation system. The question, then, is where human

confidence in semantic truth comes from and if it is fully transferable or repli-

cable. Presumably, if a machine were supplied with its own such confidence,

it could pass Penrose’s bar.

Other arguments against the possibility of human-indistinguishable ma-

chine intelligence run along similar syntax versus semantics lines. For exam-

ple, Putnam [1980] makes the case that the Löwenheim-Skolem theorem of

set theory can be applied to show how syntax underdetermines semantics.

But even this is, again, a system-dependent argument. As Putnam says, the

Löwenheim-Skolem theorem demands the Zermelo-Fraenkel (ZF) axioms to

hold, not to mention the Axiom of Choice (ZFC). This is debateably using

insufficiently fundamental tools to answer a more fundamental question.

Regardless, if reasonable doubt exists whether there is an absolute qual-

itative distinction between minds and machines, it supports a theory that

CAPTCHA research should aim to emphasize finding relative improvement

in the success rates of humans over machines. Not only may a perfectionist

CAPTCHA be practically infeasible, it is also unclear if there is theoretical

basis for its existence. Areas where the semantic gap is wide and appears

to be narrowing slowest are therefore the most promising for developing new

approaches. One area in which the gap between machine and human ca-

8

pability is known to be very wide is understanding natural language. It is

unknown precisely how difficult understanding natural language is, but as

Chomsky [1957] shows, we know that English (for example) is not a regular

language (readable by computer of limited computational capability, a deter-

ministic finite-state automaton). That natural languages like English have

still has not been classified further in the Chomsky hierarchy of languages

(e.g. context-free, context-sensitive, or recursively enumerable) is evidence

of the difficulty of the understanding or processing natural languages by ma-

chine.

3 Overview of existing approaches

3.1 Optical text recognition CAPTCHAs

Figure 2: An example of an EZ-Gimpy image. Photo courtesy of the Captcha
Project at Carnegie Mellon University.

Perhaps the most familiar type of CAPTCHA system, these exploit the

gap in optical text recognition between machines and humans. Typically, the

user is asked to read a short (frequently randomly generated) string of text

which is visually distorted with noise, rotation, and various other transfor-

mations. These schemes can be referred to as text-based, but they should

9

be confused with systems which primarily exploit a gap in comprehension of

language features. As Baird and Riopka [2005] notes, a common attack on

these type of schemes is based upon segmenting and identifying individual

characters in the text.

Mori and Malik [2003] indicate that the popular Gimpy and EZ-Gimpy

visual CAPTCHA implementations admit an automated solution in excess

of 33% of the time, and advise that this makes the mechanisms an unreliable

defense. However, as discussed above, it is possible that the effectiveness

of an implementation might be better measured by the computational cost

imposed on an attacker rather than its ability to thwart all such attacks.

Nonetheless, this is certainly an indication that there are improvements to

be made over the strategy employed by these systems.

Figure 3: An example of a simulated handwritten test. Rusu and Govin-
daraju [2004]

The handwriting based system Rusu and Govindaraju [2004] propose is

perhaps such an improvement. Rusu and Govindaraju [2004] argue that nat-

ural handwritten text offers a greater challenge for word/letter segmentation

and character recognition than conventional automated distortions and filters

(e.g. like those used by Gimpy).

10

3.2 Language-based or mixed approaches

Figure 4: A sample

prompt/answer for the

SemCAPTCHA system.

(Lupkowski and Urbanski

[2008])

A wide variety of alternate methods have

been proposed. Some, like the purely se-

mantic and language-based EGGLUE sys-

tem considered by Hernandez-Castro et al.

are implemented by a sizeable number of

websites. The EGGLUE system has a cou-

ple of notable usability advantages. Namely,

it is better accessible for blind or other-

wise disabled users via publically available

text-to-speech software than typical optical

text recognition based systems, and the con-

straints on the answer (must be an English

verb) make it potentially less frustrating to

pass for the average reasonably literate English language user.

Hernandez-Castro et. al give a good account of the faults of the EGGLUE

implementation, including a reliance on common verbs and a general suscep-

tibility to search-engine based attacks. The system appears to rely on a

static teleological database and the solution always consists of a verb, which

makes it particularly vulnerable to a dictionary attack. Though the authors

make a very good case about the flaws of the implementation, their broader

conclusions about the viability of logic- or semantics-based CAPTCHAs and

their recommendations regarding retreat from this general research direction

11

seem less well founded. A general appeal is made to improving data mining

techniques rendering semantics-based systems easily bypassed. But with-

out a more substantial argument, the counterexample with regard to optical

CAPTCHAs of steadily improving OCR techniques is easily deployed.

Figure 5: A prompt for the

EGGLUE system.

Systems can employ a multi-modal ap-

proach, as Almazyad et al. [2011] suggests,

relying on a combination of simultaneous

CAPTCHA mechanisms. This seems rea-

sonable, as an attacker must then uniquely

develop a solver which addresses a poten-

tially unique combination of layered mecha-

nisms. In general, we might tend to regard

multi-factor authentication as being more secure. For this reason, ATM cards

typically combine a token with a secret (PIN).

SemCAPTCHA (Lupkowski and Urbanski [2008]) is an example of a

multi-modal CAPTCHA which uses two techniques: (1) an ”odd one out”

approach where several possible Polish word answers are given and a se-

mantic connection exists between all but one answer, and (2) the text of

these answers are visually distorted. Notably, the example implementation

of SemCAPTCHA relies on a small and static semantic database based on

animal taxonomy (mammals, reptiles, etc.) which, if known or guessed by an

attacker, would make the system vulnerable. The “odd one out” approach

makes the system vulnerable to blind (random guess) attacks, if the text

12

recognition portion of the task is completed.

Figure 6: A sample prompt for the

What’s Up CAPTCHA system.

However, visually distorting trans-

formations are not the only ad-

ditional technique that could be

added to confuse automated read-

ers. Speaking even only of language-

based approaches, there are a num-

ber of potential methods which

may be examined. Misspelling, in-

sentence word jumbling and abbre-

viation are a few kinds of basic transformations language-based CAPTCHAs

might use to obscure words from identification by machine. A word may be

misspelled by randomly altering a number of its letters to form a different

but alphabetically similar word, and a human reader will usually nonetheless

be able to correctly identify the word from context. Likewise, even more

insidiously, a few words may be swapped for other genuine words (from a

dictionary) – this is called a real-word misspelling. Correcting for real-word

misspellings is known to be a challenging problem, though progress is being

made with efforts like Wilcox-O’Hearn et. al. using trigrams. Words may

also be rearranged in a sentence without unduly harming a human’s ability

to correctly determine its semantics (out of a list of grammatical sentences a

human might identify the one with the most coherent meaning regardless of

word order). Abbreviation or shorthand is another method of obscuration,

13

perhaps especially interesting because it seems to employs a surprising shift

of interpretation for a machine. For example, the phrase “I see you” can be

abbreviated to the phrase “i c u” by phonetic analogy. In general, natural

language is challenging to analyse.

3.3 Other approaches

Gossweiler et al. [2009] offers a computer vision based system which does not

depend on OCR. This system asks the user to submit a correct orientation

(e.g. what is ”up”) for a displayed image. Photographs are largely assumed

to be taken in an upright position, but the authors do not entirely rely

upon this, as they expect their social feedback mechanism to correct for

these kind of differences. Images of easily-detected objects are pruned from

the database based on success and prevalence of specific object detection

algorithms (e.g. images containing faces are omitted from selection), and

images which are difficult for humans to orient are also removed via the social

feedback mechanism. They identify images which are difficult for humans to

orient upright by evaluating the average and deviation in angles that multiple

users submit for a single candidate image. The presumption is that images

with high variation in submitted angle are difficult to orient due to the lack

of consensus.

Ross et al. [2010] followed Gossweiler et al.’s approach, but used line

sketch renderings of 3D models instead of photographs. This has the advan-

tage of providing a means to generate many distinct images (by viewing the

14

model at different angles) in an automated fashion. Consequently a smaller

database must be maintained to produce the same variety of CAPTCHA

problems.

4 Description of proposed method

4.1 Principle

Inspired by recent work in developing website navigation techniques by Dhu

et. al using a new method called 3-pole wafer trait sorting, this CAPTCHA

system would sort potential users as human or machine by presenting them

with three phrase options (3 poles) and allowing them to give a ‘fuzzy’ (prob-

abilistic) answer about which phrase was human-written.

As is typical, the server authenticates users as human by issuing prob-

lems to solve at the request of the client. In this case, the user weights the

three phrases with the probability they believe each phrase was written by

a human, and submits the weights as a solution. The server evaluates the

solution by degree of quality/correctness by dynamically comparing it to the

solutions of other (passing) users and an initial database of basis phrases.

If the user solves sufficiently many (ideally no more than a few) problems

successfully they pass the test and are allowed access to the web service.

15

4.2 Choosing basis (match) phrases

Princeton University’s WordNet (Miller [1995]) is a lexical database which

stores extensive relational semantic information. The database encodes words

as synonym-sets (or synsets) or groups of words with identical meaning.

More information such as hyperonymy (super-subordinate relations) is also

included, and an additional WordNet database stores teleological (purpose)

information about words. For example, an audience is a (typical) ”benefi-

ciary” of showing a movie, which is encoded with the beneficiary relation.

There are many ways to retrieve or construct meaningful phrases from

WordNet. Using the semantic relationships given between words, it would be

possible to construct simple sentences, for example (“a simpleton is childlike”

could be found by following semantic links in the portion of the database

shown in Fig. 4.1). Instead, for a proof-of-concept of the design, it suits our

purposes to take advantage of the various usage examples (usually consisting

of a simple phrase) stored for each synset in WordNet. For example, one

usage example for the word “border” might be ”the soldiers marched across

the border”.

We select phrases stochastically by picking a random word in the database

(i.e. synset element) and searching the database for a corresponding synset

entry. From the synset we may extract the database’s usage example sen-

tences which meet certain parameters (e.g. length or presence of certain

parts of speech). Having found a sufficiently large set of such phrases, we

16

Figure 7: A visualisation of a small part of the WordNet database (Vercruysse
[2010]). Words connected directly to the same node in the graph share a
definition (i.e. compose a synset). Red nodes identify nouns, orange nodes
are verbs.

may employ this as the basis of our pool of ”match” phrases, discussed further

below.

4.3 Problem structure

A problem is presented to the user to identify which of the three phrases

provided are most meaningful. The user is provided with three such phrases,

with one being a phrase known to be meaningful and the other two being

17

randomized or mutated examples. A problem, then, is a 3-tuple (M,C,R)

consisting of the three phrases, with each phrase being either randomly gen-

erated, mutated, provided or known.

In the scheme, one of the three example phrases will be the known mean-

ingful match M . One of the unknown examples will be a generated candidate

C. The other, R, will be randomized and presumed incorrect until the user

is already authenticated as human. M and C are randomly selected from a

pool of match and candidate phrases respectively.

This simple problem structure is presented with out of a desire to keep the

proof-of-concept system minimalist rather than because of methodological

constraints. It is not difficult to envision a more sophisticated implementation

which might add more aspects to the problem, such as employing visual

distortion on the text offered to the user to provide additional challenge to

attackers.

4.4 User choice mechanism

A user is presented with a triangular area with each vertex of the triangle

labeled with one of three phrases. The user is prompted to click the cursor

within the triangle nearest the one or two phrases which were ’most likely

written by a human being’. A probability score is displayed next to each

vertex M ,C, or R based on where the cursor is pointed at coordinates K.

The probability score Si for a given phrase is the area of the opposite triangle

made by the three other points in the figure, proportional to the size of the

18

Figure 8: Highlighted region m′ is the area [CKR].

exterior triangle. See Figure 8. Here, the probability of M is S = [CKR]
[MCR]

,

where the area of opposite triangle CKR (highlighted region m′) is divided

by the area of overall triangle. A user’s overall choice can be represented

as a 3-tuple (m, c, r) of certainty scores taken for each phrase (vertex of the

triangle).

19

threshold purpose
T1 Correctness (accepting users)
T2 Incorrectness (rejecting users)
T3 Candidate phrase suitability (condition for promotion)
T4 Candidate phrase unsuitability (condition for dropping anomalies)
T5 Random phrase suitability (condition for promotion)
T6 Minimum number of users (condition for promotion)
T7 Second thought threshold (condition for demoting a match back to candidate status)

Table 1: Threshold values for the system.

4.5 Passing/failing and multiple attempts

The user’s choice is given in terms of degree of certainty, so too should the

acceptance/non-acceptance be based upon a threshold of certainty as well.

The 3-tuple (m, c, r) of the user choice is examined with reference to

the matched phrase, the candidate phrase, and the random phrase. Let

Q1, Q2, . . . , Qn be the quality rating of a sequence of successive choices by

the user. The degree of quality of the choice numbered i is given by the

following:

Qi = emi − e10ri

If the
∑n

i Qi exceeds some positive threshold T1 then the user passes. An

insufficiently high Q can result in one of two consequences. First, the user

may be given another problem case to solve if
∑n

i Qi is positive. Second, the

user may be rejected if
∑n

i Qi negatively exceeds some negative threshold

T2.

20

number phrase scorers
∑

scores average
p1 ”terrible luck this time” 14 5.103 0.364
p2 ”the mean annual rainfall” 7 4.58 0.654
.
pn ”can’t get no satisfaction” 11 7.81 0.71

Table 2: Example data for a candidate phrase database of n phrases.

4.6 Candidate formation

Candidate phrases can be formed in one of several ways to ensure diversity.

Firstly, a random phrase may be promoted to the candidate pool if any single

passing user has certainty r exceed some threshold T5.

Secondly, both to introduce diversity into the system and to help identify

synonyms, match phrases are mutated by a random swap of one or more

words in the phrase taking on the same part of speech as the original word.

This mutated phrase can then be added to the candidate pool.

Finally, it is possible to provide candidate phrases from some external

source – for example, a text summarization algorithm. The success of candi-

dates from that source in being promoted might then be an indicator of the

quality of the text summarization algorithm.

4.7 Feedback mechanism

Feedback is considered in two cases: (1) for candidate phrases and (2) match

phrases. First, a candidate phrase can be promoted to a match phrase if a

consensus of passing users forms. The promotion of a candidate phrase C

to a match can only occur if a sufficiently large number of (passing) users

21

have evaluated it. Promoting a candidate phrase is then contingent on the

average of the certainty scores Ac of the k passing users who considered the

phrase C in some problem (M,C,R). In the following, cj is the certainty

score of user j normalized to a value between -1 and 1:

Ac =

∑k
j (cj)

k

If k > T6 then a candidate is allowed to be either be dropped or promoted.

If Ac > T3 the candidate is promoted to a match. Meanwhile, if Ac < T4 the

candidate may be dropped from the pool as an anomaly.

Secondly, it is possible that a candidate is erroneously promoted. To

address this, we can demote a phrase to candidate status if enough users are

uncertain of it. We again consider the average of the certainty scores Am

but this time of the k passing users who considered the phrase M in some

problem (M,C,R). Similarly, if mj is the certainty score of user j normalized

to a value between -1 and 1 and the average is

Am =

∑k
j (mj)

k

then a match can be demoted if Am < T7 (and k > T6).

22

Figure 9: The states a phrase can go through in the system.

4.8 Finding synonyms

We can identify likely synonyms of words when match phrases are mutated

(creating candidate phrases). When a word is replaced in the match phrase,

the substitute word can be considered a likely synonym if the new mutated

phrase is promoted to a match.

To achieve this, we track which word was substituted in a given candidate.

If the candidate is promoted to a match, we add the pair (substitute, word)

to a list of synonyms found.

23

Figure 10: An example testing session.

5 System evaluation

5.1 Criteria

Overall, the quality of the system should be evaluated on the merits of its

usability and security. Secondarily, it can be evaluated on the quality of its

semantic data contributions.

24

5.2 Security analysis

The scheme may achieve subpar results if a hypothetical attacker has access

to the same initial database. Fritsch et al. [2010] discusses the flaws of a

CAPTCHAs which relies on a hidden database or answer key, rather than

generating problems on the fly. This system is something of a hybrid ap-

proach, using a database to generate new problems. It is worth noting that

the issues of maintaining secrecy of a database is mitigated by the fact that

the system’s database is not static. Any given instance of the running sys-

tem would have a distinct database that would be instantaneously updated

with every accepted user. To this end, though, it is important to cultivate a

diverse set of candidate phrases, as discussed above.

To evaluate the system, trials with human subjects will be compared

against a brute force attack. The major metrics to be used will include ac-

ceptance rate of human users and rejection rates of brute force attacks. This

is a straightforward and typical way to evaluate CAPTCHA systems. If these

acceptance and rejection rates are comparable to similar CAPTCHAs, this

will provide a measure of the viability and security of the system respectively.

For an initial test, we performed more than 20 user sessions (culminating

in rejection or acceptance). A minimum bar for success was that the system

rejected no more than 10 percent of the time with human users. While initial

human tests were adequate, showing no rejections, the average number of

attempts was initially between 2 and 3.

We compared these results with 1000 sessions with a brute force (choos-

25

Figure 11: Distribution of attempts over all sessions of preliminary testing
with humans.

ing solution randomly) attack. Results from these tests together implied that

human responses were typically very close to the correct phrase (or mutated

phrase), while random responses of course had a uniform distribution. Be-

cause of this observation, our original degree of quality calculation (which was

linear) was substituted for a new nonlinear one (highly correct and highly

incorrect responses are weighted more heavily).

We ran the same tests again after implementing the new quality calcu-

lation. Figure 11 and Figure 12 show these results. The average human

user session with the revised algorithm finished with approximately 1.233

attempts. Sessions with the brute force attacker had a similar statistic, but

with a drastically lower rate of success (%0.9 versus %100). This indicates a

minimum level of security which we find adequate for a prototype.

26

Figure 12: Distribution of attempts over all sessions of preliminary testing
versus a brute force attacker.

5.3 Usability analysis

The system must be evaluated on grounds of usability, particularly whether

the prompt can be easily understood by users. Of course, the user’s grasp of

the graphical layout and meaning of their choice is as essential to authenti-

cation as feedback.

For usability evaluation, the most important numerical measures besides

failure rate are the average number of attempts required for a human user to

be accepted, and the overall time spent for the user to complete the problems

given (in seconds). These are among the criteria that Bursztein et al. [2010]

uses to evaluate a large number of CAPTCHAs in regular use. They observe

that systems vary widely in terms of usability (”easiness” for humans), with

audio-based CAPTCHAs being the most ”difficult”. In our limited testing of

this system, the human solving time was consistently between 10-20 seconds.

This is consistent with the solving time Bursztein et al. [2010] observed for

27

popular image-based CAPTCHAs (which one can assume are fairly familiar

tasks to solve).

For this system, intuitively the time to solve a given problem would seem

to be proportional to the length of phrases chosen (time to read). For this

reason, shorter phrases may be slightly preferred.

We must also determine if stochastically generated short phrases will too

often have meaning for users, causing confusion by generating problems with

only meaningful phrases as choices. This could be mitigated by choosing

longer phrases, which would decrease the probability that a given set of

randomly selected words will have a coherent meaning. In a preliminary

test, the author has found that in a sample of 100 generated problem cases

with phrases of 3 words or more, every randomly generated phrase appears

subjectively less meaningful than the match phrase it is coupled with and

only 3 such phrases even have the appearance of a sentence fragment (see

Appendix C for a listing of the data). This provisionally indicates that

lengthier phrases are not needed.

6 Development details

6.1 Implementation and technologies used

To provide the GUI for the client, a custom JavaScript/HTML5 canvas inter-

face is used. The interface responds to any mouseclick within the designated

triangular area. Any such choice of position constitutes the user’s solution

28

Figure 13: An early alpha of the GUI in debug view, showing distances
between vertices.

to the presented problem. A separate submission button will be included to

allow the user to fine-tune their answer before sending it to the server.

On the server side, Node.js is used to handle incoming connections and

generate problem cases for users. For WordNet access, the WNdb (WordNet

database) Node.js package is employed. This package provides direct retrieval

of synsets from the database by lemma (synset element).

Node.js is naturally non-blocking, asynchronous and event-driven, with

callbacks typically used to finish tasks. Node.js is appropriate because it is

designed to handle many concurrent client connections over HTTP, making

the system in principle scalable beyond the size we test the system at. See

Figure 15 for a diagram of how the server interacts with the clients and its

29

stored data.

During a user session, the server may produce one or more problems,

consisting of a generated match, candidate, and random phrase. If a user

answers the problem(s) sufficiently correctly, the server will accept the user

and the session ends. Alternately, the session may end if the user is rejected.

The update mechanism, described in more detail in the methodology section

above, is triggered only upon the acceptance of a user session.

6.2 Major system components and timeline

The system involves a server and client segment. The major tasks/compo-

nents of the development are:

• Generation of match phrases (server)

• Generation of random phrases (server)

• Generation of candidate phrases (server)

• Handling multiple user sessions (server)

• Update mechanism for the match and candidate pools using thresholds

(server)

• User interface (client)

A timeline for the implementation of these components was created as

seen in Figure 14.

30

Figure 14: A development timeline (Gantt) chart.

6.3 Description of development approach

For the software development, an Agile coding methodology is employed. An

Agile coding methodology is characterized by an iterative and evolutionary

style. Each iteration is completed in a relatively short time frame, involving

stages of design, coding and acceptance testing. In this project, after the

completion of a major component of the software it is immediately subjected

to so-called smoke testing to ensure the component functions at a basic level.

This is followed by an integration test with the other components completed

so far.

To clarify, there is also an Agile project management approach, which

emphasizes responsiveness to clients. The client provides ”user stories” de-

scribing the functionality they would like to be implemented initially. How-

ever, these guides for development which allow more flexibility in the end

31

Figure 15: Interaction between server, clients, and stored data.

product than in a traditional waterfall approach. The short length of itera-

tions allows regular feedback, and direct input from the client on the progress

of development. In the case of a self-directed research project such as this

one, the feedback stage takes the form of an informal analysis of intermediate

results by the author and the supervising professor.

32

Figure 16: Results in context of comparable recent CAPTCHA designs from
the image recognition family.

7 Conclusions

7.1 Comparing results

Language-based CAPTCHAs have not been well-explored, so we compare

our system to examples from the image recognition family. Many examples

from this family (and language-based systems like SemCAPTCHA) rely upon

manual human work to create a working database from which to generate

challenges for users. To increase the size of our database, one must merely

run the system over a longer period of time.

The rule of thumb for an acceptable level of resistance to blind guess

attacks varies, but Zhu et. al suggest a level of 0.6%,which we easily accomo-

date. In terms of resistance to random guess attacks and in acceptance rate

for humans our system is competitive or superior with comparable systems.

The system could be adapted to identify semantic relationship between

words, as WordNet’s data does. Extensions of the concept using a similar

33

multilevel, triangular probability scheme could work to identify the relational

type of a phrase. This would be at a tradeoff of additional prompts for users,

which would ideally be generally avoided.

Combination of the proposed method with a traditional optical text recog-

nition approach employing visual distortion on the displayed phrases may re-

duce accessibility for blind persons, for example, but present a more thorough

defense.

One other significant security concern is increasing the difficulty of a

dictionary-style attack on the system. The sensitivity of the responses to

repeated wrong answers minimizes the success of completely blind attacks,

as shown in our early tests, but some valid worry remains regarding more

sophisticated approaches. For example, an attack based on search engine

query results may be more effective.

More study may also be required to find an ideal configuration of thresh-

old values based on the various requirements of phrase pool diversity, user

reaction to the sensitivity level, and the quality and rate of accumulating

match phrases or synonyms. However, good estimation of these thresholds

might require a deployment of the software package to some sizeable userbase.

7.2 Implications and summary

We presented some philosophy behind CAPTCHA design that would support

qualitative rather than absolute criteria for evaluation, and designed a system

with those goals in mind. The probabilistic nature of the system provides

34

a desired granularity of responses that many CAPTCHAs do not and the

collection of responses (feedback) allows for the generation of new semantic

data. It is indicated that a probabilistic, language-based CAPTCHA system

is a feasible means to secure a web service.

8 Appendix A: Main authentication sequence

UML

35

9 Appendix B: Sample code

The following is a partial listing of some of the most relevant portions of the

software code. The full code can be found on GitHub at this address:

https://github.com/teslinroys/wc_captcha

It is published under the MIT License, see LICENSE file for details. For

code documentation, TypeDoc is used for the TypeScript code and Docco

for the Node.js code.

9.1 Serverside (Node.js)

1 func t i on genProblem (c a l l b a c k)

2 {

3 var t r i p l e t = new Array () ;

4 var p h r a s e f u n c t i o n s = new Array () ;

5 p h r a s e f u n c t i o n s . push (genMatchPhrase) ;

6 p h r a s e f u n c t i o n s . push (genCandidatePhrase) ;

7 p h r a s e f u n c t i o n s . push (genRandomPhrase) ;

8

9 p h r a s e f u n c t i o n s . forEach (func t i on (phrasegen func) {

10 phrasegen func (getRandomInt (3 , 7) , f unc t i on (phrase) {

11 t r i p l e t . push (phrase)

12 i f (t r i p l e t . l ength == 3)

13 c a l l b a c k (t r i p l e t [0]+ ” , ”+t r i p l e t [1]+ ” , ”+t r i p l e t

[2]) ;

14 }) ;

36

15 }) ;

16 }

17

18 func t i on genRandomPhrase (plength , c a l l b a c k)

19 {

20 var rw = rndwords (plength) ;

21 var phrase = ”\”” + rw [0] ;

22 for (var i = 1 ; i < plength ; i++)

23 phrase = phrase + ” ” + rw [i] ;

24 phrase = phrase + ”\”” ;

25 c a l l b a c k (phrase) ;

26 }

27

28 func t i on genMatchPhrase (plength , c a l l b a c k)

29 {

30 var phra s e opt i on s = new Array () ;

31 var lemma = v e r b l i s t [getRandomInt (0 , v e r b l i s t . l ength)] ; //

Keep genera t ing random verb lemmas

32 wordnet . lookup (lemma , func t i on (r e s u l t s) { //And doing

WordNet lookups f o r the s yn s e t s the lemma i s a par t o f

33 r e s u l t s . forEach (func t i on (r e s u l t) { //For each synse t we

f ind ,

34 var g l = St r ing (r e s u l t . g l o s s) ; // Extrac t

g l o s s a r y from synse t

35 var s en t enc e pa t t e rn = /” (. ∗ ?) ”/g ; //Use a

r e gu l a r expre s s i on to i d e n t i f y the sentence

examples

37

36 var matches = g l . match (s en t enc e pa t t e rn) ; //Find

matches f o r the regex

37 i f (matches != n u l l) // I f t h e r e are any matches ,

38 for (var n = 0 ; n < matches . l ength ; n++) //

Go through each match

39 i f (t o k e n i z e r . t oken i z e (matches [n]) .

l ength == plength) //And i f i t i s the

r i g h t l e n g t h

40 phra s e opt i on s . push (matches [n]) ; //

Make a note o f the phrase

41 //}

42 })

43 i f (phra s e opt i on s . l ength < 1)

44 genMatchPhrase (plength , c a l l b a c k) ; // t r y another

lemma i f t h i s one didn ’ t g i v e us the r e s u l t s we

want

45 else

46 c a l l b a c k (phra s e opt i on s [getRandomInt (0 ,

phra s e opt i on s . l ength)]) ; // complete when at

l e a s t one phrase to choose from i s found

47 })

48 }

49

50 func t i on genCandidatePhrase (plength , c a l l b a c k) {

51 genMatchPhrase (plength , func t i on mutate (phrase) {

52 var phrasewords = t o k e n i z e r . t oken i z e (phrase) ;

53 var mutations = new Array () ;

38

54 var countwords = 0 ;

55 phrasewords . forEach (func t i on wordInPhrase (word) {

56 mutateWord (word , func t i on givenMutation (word ,

mutation) {

57 i f (word!=mutation)

58 mutations . push ([word , mutation]) ;

59 countwords++;

60 i f (countwords == phrasewords . l ength)

61 c a l l b a c k (applyMutation (phrasewords ,

mutations [getRandomInt (0 , mutations .

l ength)]))

62 })

63 }) ;

64 }) ;

65 }

66

67 func t i on applyMutation (phrasewords , mutation)

68 {

69 var mp = ”\”” + phrasewords [0] ;

70 for (var i = 1 ; i < phrasewords . l ength ; i++)

71 mp = mp + ” ” + phrasewords [i] ;

72 mp = mp + ”\”” ;

73 i f (mutation != n u l l)

74 mp=mp. r e p l a c e (mutation [0] , ” (”+mutation [0]+ ”−>”+mutation

[1]+ ”) ”) ;

75 return mp;

76 }

39

77

78 func t i on mutateWord (word , c a l l b a c k)

79 {

80 wordnet . lookupSynonyms (word , func t i on (synonyms) {

81 i f (synonyms . l ength > 0) {

82 var pos matching syns = new Array () ;

83 var countsyns = 0 ;

84 synonyms . forEach (func t i on synInSet (syn) {

85 samePOS(word , syn . lemma , func t i on (isSame) {

86 countsyns++;

87 i f (isSame)

88 pos matching syns . push (syn) ;

89 i f (countsyns == synonyms . l ength) {

90 i f (pos matching syns . l ength > 0)

91 c a l l b a c k (word , pos matching syns [

getRandomInt (0 , pos matching syns

. l ength)] . lemma) ;

92 else

93 c a l l b a c k (word , word) ;

94 }

95 })

96 }) ;

97 }

98 else

99 c a l l b a c k (word , word) ;

100 }) ;

101 }

40

9.2 Clientside (Typescript/HTML5)

1 c l a s s Vector2 {

2 pub l i c X: number ;

3 pub l i c Y: number ;

4 /∗∗

5 ∗ Represents a 2D vec to r .

6 ∗/

7 cons t ruc to r (x : number , y : number) {

8 t h i s .X = x ;

9 t h i s .Y = y ;

10 }

11 /∗∗ Returns the d i s t ance between t h i s v e c t o r and the input

v e c t o r . ∗/

12 distanceTo (v2 : Vector2) : number {

13 var a = t h i s .X − v2 .X;

14 var b = t h i s .Y − v2 .Y;

15 var c2 = Math . pow(a , 2) + Math . pow(b , 2) ;

16 return Math . s q r t (c2) ;

17 }

18 }

19

20 c l a s s Captcha {

21 pub l i c con : CanvasRenderingContext2D ;

22 pub l i c canvas : HTMLCanvasElement ;

23 pub l i c c o n t r o l p t s : Vector2 [] ;

24 /∗∗

25 ∗ Constructs the i n t e r a c t i v e CAPTCHA element .

41

26 ∗/

27 cons t ruc to r (c : HTMLCanvasElement) {

28 t h i s . con = c . getContext (’ 2d ’) ;

29 t h i s . canvas = c ;

30 t h i s . canvas . addEventListener (”mousedown” , (event :

MouseEvent) => t h i s . onMouseDown(event) , f a l s e) ;

31 t h i s . c o n t r o l p t s = [new Vector2 (250 , 50) , new Vector2

(50 , 450) , new Vector2 (450 , 450)] ;

32 }

33 /∗∗ This event hand ler redraws the canvas when i t i s c l i c k e d

. ∗/

34 onMouseDown(e : MouseEvent) {

35 var x , y ;

36 i f (e . pageX | | e . pageY) {

37 x = e . pageX ;

38 y = e . pageY ;

39 }

40 else {

41 x = e . c l i en tX + document . body . s c r o l l L e f t +

42 document . documentElement . s c r o l l L e f t ;

43 y = e . c l i en tY + document . body . s c ro l lTop +

44 document . documentElement . s c ro l lTop ;

45 }

46 // Convert to coord ina t e s r e l a t i v e to the convas

47 x −= t h i s . con . canvas . o f f s e t L e f t ;

48 y −= t h i s . con . canvas . o f f s e tTop ;

49

42

50 var mp: Vector2 = new Vector2 (x , y) ;

51 var m: Vector2 = t h i s . c o n t r o l p t s [0] ;

52 var c : Vector2 = t h i s . c o n t r o l p t s [1] ;

53 var r : Vector2 = t h i s . c o n t r o l p t s [2] ;

54 var b : boolean = t h i s . po in t InTr i ang l e (mp, m, c , r) ;

55 t h i s . draw () ;

56 i f (b == true) {

57 t h i s . con . f i l l T e x t (”m=” + Math . round (mp. distanceTo (m)

) +” c=” + Math . round (mp. distanceTo (c)) + ” r=” +

Math . round (mp. distanceTo (r)) , 50 , 50 , 80) ;

58 t h i s . con . beginPath () ;

59 t h i s . con . moveTo(m.X, m.Y) ;

60 t h i s . con . l ineTo (mp.X, mp.Y) ;

61 t h i s . con . moveTo(c .X, c .Y) ;

62 t h i s . con . l ineTo (mp.X, mp.Y) ;

63 t h i s . con . moveTo(r .X, r .Y) ;

64 t h i s . con . l ineTo (mp.X, mp.Y) ;

65 t h i s . con . c losePath () ;

66 t h i s . con . s t r o k e S t y l e = ’ rgb (32 , 128 , 64) ’ ;

67 t h i s . con . s t r oke () ;

68

69 }

70 }

71 /∗∗ Draws the CAPTCHA element to the s p e c i f i e d canvas . ∗/

72 draw () {

73 t h i s . con . c l ea rRec t (0 , 0 , t h i s . con . canvas . width , t h i s . con

. canvas . he ight) ;

43

74 t h i s . con . beginPath () ;

75 t h i s . con . moveTo(t h i s . c o n t r o l p t s [0] . X, t h i s . c o n t r o l p t s

[0] .Y) ;

76 for (var i = 0 ; i < t h i s . c o n t r o l p t s . l ength ; i++) {

77 t h i s . con . l ineTo (t h i s . c o n t r o l p t s [i] . X, t h i s .

c o n t r o l p t s [i] . Y) ;

78 }

79 t h i s . con . l ineTo (t h i s . c o n t r o l p t s [0] . X, t h i s . c o n t r o l p t s

[0] .Y) ;

80 t h i s . con . c losePath () ;

81 t h i s . con . s t r o k e S t y l e = ’ black ’ ;

82 t h i s . con . s t r oke () ;

83 }

84 /∗∗ Returns the cursor p o s i t i o n r e l a t i v e to the canvas . ∗/

85 getCurso rPos i t i on (e) {

86 var x ;

87 var y ;

88 i f (e . pageX | | e . pageY) {

89 x = e . pageX ;

90 y = e . pageY ;

91 }

92 else {

93 x = e . c l i en tX + document . body . s c r o l l L e f t +

94 document . documentElement . s c r o l l L e f t ;

95 y = e . c l i en tY + document . body . s c ro l lTop +

96 document . documentElement . s c ro l lTop ;

97 }

44

98 // Convert to coord ina t e s r e l a t i v e to the convas

99 x −= t h i s . con . canvas . o f f s e t L e f t ;

100 y −= t h i s . con . canvas . o f f s e tTop ;

101

102 return [x , y]

103 }

104

105 /∗∗ Returns whether or not a g iven po in t (e . g . mouse

po s i t i o n) i s i n s i d e a t r i a n g u l a r area . ∗/

106 po in t InTr i ang l e (po int : Vector2 , v1 : Vector2 , v2 : Vector2 , v3 :

Vector2) : boolean {

107 var A = (−v2 .Y ∗ v3 .X + v1 .Y ∗ (−v2 .X + v3 .X) + v1 .X ∗ (

v2 .Y − v3 .Y) + v2 .X ∗ v3 .Y) / 2 ;

108 var s i gn = A < 0 ? −1 : 1 ;

109 var s = (v1 .Y ∗ v3 .X − v1 .X ∗ v3 .Y + (v3 .Y − v1 .Y) ∗

po int .X + (v1 .X − v3 .X) ∗ po int .Y) ∗ s i gn ;

110 var t = (v1 .X ∗ v2 .Y − v1 .Y ∗ v2 .X + (v1 .Y − v2 .Y) ∗

po int .X + (v2 .X − v1 .X) ∗ po int .Y) ∗ s i gn ;

111 return s > 0 && t > 0 && s + t < 2 ∗ A ∗ s i gn ;

112 }

113 }

114

115 var captcha ;

116

117 /∗∗ Loads CAPTCHA element . ∗/

118 window . onload = () => {

45

119 var c = <HTMLCanvasElement> document . getElementById (’ captcha

’) ;

120 captcha = new Captcha (c) ;

121 captcha . draw () ;

122 } ;

10 Appendix C: Test data

In the following data, only entries 29, 44, and 81 contain a random phrase

with even fragmentary meaning. Notation (a-¿b) represents a mutation in a

candidate phrase (would not be visible in a deployed system).

1 0 ” concerned capta in c l e a r mate r i a l p a r t i c u l a r l y b a t t l e ” , ” the (

sommelier−>waite r) decanted the wines ” , ”mangle the s h e e t s ”

2 1 ” f a c e t a b l e g iven crowd” , ”The event evades exp lanat ion ” , ” His

(eyes−>op in ion) were g l i s t e n i n g ”

3 2 ” f o r e i g n comfortab le upper” , ”some s a l t s subl ime when heated ” ,

”We b r e a k f a s t at (seven−>d i g i t) ”

4 3 ”grandmother shop pay out s id e people tax ” , ”Count on the

monsoon” , ”Mendel (t r i ed−>r e l i a b l e) c r o s s b r e e d i n g ”

5 4 ” t r i p language season o c c a s i o n a l l y sea f r i e n d ” , ”was

d i s contented with h i s p o s i t i o n ” , ” she achieved her (goal−>

own goal) d e s p i t e s e tbacks ”

6 5 ” r u l e between d i f f i c u l t y mood manner f e e t ” , ” r e l i e v e the

p r e s su r e and the s t r e s s ” , ”The Turks be s i eged (Vienna−>

s c h n i t z e l) ”

7 6 ” lungs worry merely act bear anything ” , ” i n s t a l l the washer

46

and dryer ” , ” she could not (fo rbear−>r e f r a i n) weeping”

8 7 ” g i r l want s a l e cotton s h i r t un i t ” , ” Jup i t e r has s i x t e e n moons

” , ”a l eague o f (d i sun i t ed−>d iv ided) nat ions ”

9 8 ” s t r a i g h t b r i e f s i gn mass p i e must” , ”Sample the r e g i o n a l

d i s h e s ” , ” (Murdoch−>w r i t e r) owns many newspapers ”

10 9 ”sum br ight l i s t e n f r u i t paragraph h ighe s t ” , ” they performed

with great p o l i s h ” , ”The sun shone on the (f i e l d s −>comedian) ”

11 10 ” paid steam suppose mountain t r i c k t a s t e ” , ”We embarked on an

e x c i t i n g e n t e r p r i s e ” , ” (repe l−>d i s g u s t) the enemy”

12 11 ” f a i r l y c e l l g r e a t e r ” , ”The c h i l d r e n crunched the (c e l e ry−>

c e l e r y s t i c k) s t i c k s ” , ”a pos t e r a dve r t i s e d the coming

a t t r a c t i o n s ”

13 12 ” changing beg inning birthday s m a l l e s t only f i n e s t ” , ” hose the

lawn” , ”a t i n c t u r e o f (condescens ion−>arrogance) ”

14 13 ” hear ing pain mirror ” , ”Her f a c e rad ia t ed with happiness ” , ”

She leaned over the (ban i s t e r−>b a l u s t e r) ”

15 14 ” send you amount won” , ” batten down a sh ip ’ s hatches ” , ”zap

the (enemy−>people) ”

16 15 ” saved tone f e l t voyage gene ra l ” , ”pray to the (Lord−>

margrave) ” , ” the f i n a l d r a f t o f the c o n s t i t u t i o n ”

17 16 ”bar f low aga in s t ” , ”The c e i l i n g blackened ” , ” the oven i s (

o f f−>execute) ”

18 17 ”room customs f u l l ” , ” i n t e r t w i n e the r ibbons ” , ”She

understands (French−>Walloon) ”

19 18 ” exac t l y above minute t r o p i c a l ” , ” nothing w i l l r e s u l t from

t h i s meeting ” , ”an uncut (diamond−>minor su i t) ”

20 19 ”command vast f i x shape ” , ” grout the (bathtub−>f ootbath) ” , ”

47

We had to see a p s y c h i a t r i s t ”

21 20 ”hunt f l y b o t t l e mathematics ” , ” her hea l th i s b e t t e r now” , ”

This car s u i t s my (purpose−>aim) we l l ”

22 21 ”park f low s t ronge r ” , ” g l a s s the windows” , ” the (r e t i c u l a t e−>

f r e t t e d) ve in s o f a l e a f ”

23 22 ” pr e s su r e meal i t s prev ious l ack ” , ”She c a l l e d f o r room

s e r v i c e ” , ”The musica l (performance−>r e n d i t i o n) spark l ed ”

24 23 ”page pure ocean ” , ”hyphenate these words and names” , ”The

horse (f i n a l l y −>l a s t) s t ruck a pace ”

25 24 ”bow metal s i c k moon l a t e r ” , ”The cur ta in swooshed open” , ”

The two old f r i e n d s (paired−>mated) o f f ”

26 25 ” f r i e n d l y improve soon a l r eady minera l s ” , ”The c i rcumstances

extenuate the crime ” , ”a dea fen ing (no i se−>bark) ”

27 26 ” r e g u l a r f e l l o w p e r f e c t l a i d t roub l e ” , ” This ques t i on r e a l l y

stuck me” , ”you can r e l y on h i s (d i s c r e t i o n−>prudence) ”

28 27 ” f a c t change stepped func t i on farmer f a l l ” , ”a s i z a b l e

f o r tune ” , ” (Don−>United Kingdom) t b e l i t t l e h i s i n f l u e n c e ”

29 28 ” that pound having immediately ” , ”a (s c h o o l g i r l−>f e m a l e c h i l d

) fantasy ” , ”Her dream r e a l l y m a t e r i a l i z e d ”

30 29 ” scared about time y o u r s e l f ” , ” s p l a t f i s h over an open f i r e ” ,

” Sorry to (t rouble−>scanda l) you but”

31 30 ” vege tab l e congre s s f i f t e e n observe prevent ” , ”Which (horse−>

s t epper) are you backing ” , ”Storm the f o r t ”

32 31 ” food other s i z e s p e l l ” , ”nominate a (committee−>

f a i rn e s s co mmi s s i on) ” , ”The o i l suppurates the pus tu l e s ”

33 32 ” v e s s e l s eye f a c e trunk l i k e p l e a su r e ” , ”The man sc rup l ed to

p e r j u r e h i m s e l f ” , ” (s lo sh−>sp l a sh) pa int a l l over the wa l l s ”

48

34 33 ” c e r t a i n j a r s ink ” , ”She pursued many a c t i v i t i e s ” , ”He

r e f u s ed my (o f f e r−>overb id) o f h o s p i t a l i t y ”

35 34 ” s t r e e t a l i k e v i s i t hur r i ed donkey” , ” the dog chased the

rabb i t ” , ” (Some−>few) c e l l s had nuc leated ”

36 35 ”watch i s v a r i e t y s p l i t ” , ” br ing out the truth ” , ”These herbs

(s u f f e r−>g r i e v e) when sunned”

37 36 ”customs search morning planning add i t i on danger ” , ” the board

was a f o o t shor t ” , ” (He−>nob l e gas) managed to mult ip ly h i s

p r o f i t s ”

38 37 ” t i d e throughout l y i n g ” , ”The c o l o r s blend we l l ” , ”The

b o i l i n g soup was (f r o th ing−>unhealthy) ”

39 38 ” e i g h t t e a r s t r i p ” , ”He h i t a home run” , ” the (dropout−>

i n d i v i d u a l i s t) r a t e ”

40 39 ” chart fun wore s o l v e everyth ing ” , ” s k i l l e d in the

u t i l i z a t i o n o f computers ” , ”Her sav ings dwindled (down−>

lowered) ”

41 40 ” p i t ch pot cut yet problem cat ” , ” the sh ip beached near the

port ” , ” not (worth−>pennyworth) shucks ”

42 41 ”somehow poet pink changing duty” , ”he extended h i s mitt ” , ”

pursue a (hobby−>s p e l e o l o g y) ”

43 42 ” potatoes d i sappear donkey” , ” i r o n i n g ge t s r i d o f most

wr ink l e s ” , ” (I−>halogen) aim to a r r i v e at noon”

44 43 ”one o ld north i t coach r e s p e c t ” , ”The chemica l undergoes a

sudden change” , ”a b e l t o f (high−>e l a t e d) p r e s su r e ”

45 44 ” d e f i n i t i o n f a c t o r y image” , ”The storm fused the e l e c t r i c

mains” , ” This (statement−>answer) mi s r ep r e s en t s my i n t e n t i o n s

”

49

46 45 ” statement f i l l music complete vote f o r e i g n ” , ”He quoted the

Bib le to her ” , ”The (army−>standing army) surged forward ”

47 46 ” fami ly f u l l y room” , ”The home team scored many times ” , ” that

mountain i s (s o l i d−>hard) rock ”

48 47 ” fu r whole atmosphere concerned grown house ” , ” m i l l a co in ” ,

”a (wet−>drippy) bathing s u i t ”

49 48 ” e f f e c t potatoes i n s t a n t s i s t e r ” , ” i t was a l l f o r naught” , ”

The (v e s s e l−>bathtub) hove in to s i g h t ”

50 49 ” f i e r c e had p o s i t i o n did motion made” , ” (I−>chemica l e l ement)

misplaced my e y e g l a s s e s ” , ” erupt in anger ”

51 50 ” heat drew gather fox century key” , ” (Adam−>man) knew Eve” , ”

core an apple ”

52 51 ”push mail b u i l d i ng ” , ”a f l i g h t de s t ined f o r New York” , ”

r e t e l l a (story−>f i b) ”

53 52 ” repor t hang rays ” , ” s a n c t i f y the marriage ” , ”a l i f e (

consecrated−>desec ra t ed) to s c i e n c e ”

54 53 ” r e c e n t l y po int d i r e c t i o n s o l v e bone” , ” This w i l l save money”

, ”The (boat−>barge) tacked ”

55 54 ” t h i r t y per v a r i e t y g r e a t e s t f e l l swing ” , ”The d in ing room

blackened out ” , ” (Ring−>a s s o c i a t i o n) the b e l l s ”

56 55 ”proud s l a b s l eave count ” , ”Snow capped the mountains” , ”The

(bad−>s eve r e) witch cursed the c h i l d ”

57 56 ” studying whole only ” , ”The branches made a r o o f ” , ”what he

sa id was mostly (bu l l−>f ake) ”

58 57 ” us ing damage camera range ” , ” she was spo r t i ng a (new−>

o r i g i n a l) hat ” , ”We had to o b l i g e him”

59 58 ”bush nine pet cup” , ”epoxy the shards ” , ” (I−>seawater)

50

apo log i z ed f o r being l a t e ”

60 59 ” pub l i c c l ean coa l r ea r bottom” , ” This expe r i ence transformed

her complete ly ” , ” sugar your (tea−>oolong) ”

61 60 ” wr i t i ng shaking s t r a i g h t hidden ” , ” s l e e p o f f a hangover ” , ”

the party went with a (bang−>l o v e r) ”

62 61 ” door bean wheel at heading ” , ” His (sharp−>p e n e t r a t i v e) nose

ju t t ed out ” , ” check the brakes ”

63 62 ” happi ly mix busy p r i n c i p l e rubber ” , ” I n t e r e s t e d tapered o f f ”

, ” (I−> l e t t e r) managed h i s campaign f o r governor ”

64 63 ” save season means common f l o a t i n g be” , ” dancers in two

p a r a l l e l rows” , ”These s i g n s bode bad (news−>so f t news) ”

65 64 ” tee th l i p s a lphabet ” , ”The p o l l u t i o n i s endanger ing the

crops ” , ”Stay with me (p lease−>d e l i g h t) ”

66 65 ” spread song wealth un ive r s e d i s cove ry ” , ”he always f o l l o w s

the (l a t e s t−>f a s h i o n a b l e) f ads ” , ” t h i s may land you in j a i l ”

67 66 ” few whispered movement” , ”a yet sadder t a l e ” , ” (bandy−>u n f i t

) about an idea ”

68 67 ” r i c h s l i g h t l y crowd alone in to ” , ” marb le i ze the f i r e p l a c e ” ,

”a twofo ld (inc r ea s e−>add i t i on) ”

69 68 ” musica l twelve whose we l l common” , ”wanton one s (money−>

appropr i a t i on) away” , ” d i s a r range the papers ”

70 69 ” acc ident the se r o l l f o r c e s a f e t y ” , ”She c a l l e d f o r room

s e r v i c e ” , ” the (novel−>n o v e l i s t) had chapter t i t l e s ”

71 70 ” ten indeed met hurt problem moment” , ” she gave a gasp and

f a i n t e d ” , ” (s e c t i o n a l i z e−>d iv id e) a country ”

72 71 ” sang earn l i k e l y s o f t l y a f t e rnoon p r i n c i p l e ” , ”The road

d i v a r i c a t e s here ” , ” r a f t wood down a (r i v e r−>Niagara) ”

51

73 72 ” breathe trap hundred” , ” I want my own room” , ”The (war−>Arab

−I s r a e l i W a r) d e s e n s i t i z e d many s o l d i e r s ”

74 73 ” vo i c e freedom f r i g h t e n ” , ” Please bracket t h i s remark” , ”we

had a good (d i s cu s s i on−>argument) ”

75 74 ” n ight ever br ing dr ink say add i t i on ” , ”approach a new

p r o j e c t ” , ”The (mud−>s o i l) mired our ca r t ”

76 75 ” s t r u c t u r e known border whole” , ” B u l l e t s spanged in to the

t r e e s ” , ”The v i l l a dominates the (town−>Gadsden) ”

77 76 ” court p a r t i c u l a r l y born r a i s e ” , ”The parents had the c h i l d

bapt ized ” , ”The bread (crusted−>covered) in the oven”

78 77 ” d i f f i c u l t s t o r e halfway unde r l i n e ” , ”We were h ik ing in

Colorado ” , ”You cannot (be l i e v e−>understand) t h i s man”

79 78 ” diameter blue frame save toge the r memory” , ”The l i f e ve s t

buoyed him up” , ” F i l e the se b i l l s (p l ease−>s a t i s f y) ”

80 79 ”number b e t t e r welcome measure e l e c t r i c second ” , ” I blundered

during the job in t e rv i ew ” , ” the (compound−>enamel)

decarboxylated ”

81 80 ”brown famous f l i e s ” , ”The space sh ip blazed out in to space ” ,

”Tone down that a g g r e s s i v e (l e t t e r−>p s i) ”

82 81 ” combination c l imate o f c i t y ” , ”He gr ipped the s t e e r i n g wheel

” , ” l e a t h e r (bound−>c i t y l i n e) volumes”

83 82 ” s tud i ed get sky shor t trunk ” , ” m i l i t a r i z e the C i v i l S e r v i c e ”

, ”Walk the (t i ght rope−>rope) ”

84 83 ” rod prevent g a s o l i n e s t a r s i t u a t i o n ” , ”Her ge s tu r e

emphasized her (words−>l i n e) ” , ”The students f i l e d in to the

c lassroom ”

85 84 ” occur d o l l a r s e t t i n g e x c i t i n g s e t t i n g ” , ” (He−>

52

Hebrew alphabet) t r i e d to c r y s t a l l i z e h i s thoughts ” , ”She

unsexed h e r s e l f ”

86 85 ” s e l e c t i o n salmon met b i t body” , ” p r e s e rve the (peace−>order)

in the fami ly ” , ”chrome bathroom f i x t u r e s ”

87 86 ” freedom v e s s e l s court ” , ” This drug expec to ra t e s qu i ck ly ” , ” (

bend−>cur l up) the rod”

88 87 ” p lus scene s e l e c t i o n sh ine ” , ” the p e c u l i a r aromatic odor o f

c l o v e s ” , ”The pornographic p i c t u r e s s i ckened (us−>Colony) ”

89 88 ” p lant g i f t s a l t capta in easy twice ” , ”You must overcome a l l

d i f f i c u l t i e s ” , ” This medic ine i s (home−>homeowner) con f e c t ed ”

90 89 ” r i s e s l e e p p lace ” , ”They bur ied the s t o l e n goods ” , ” (I−>

seawater) m beat ”

91 90 ” p o s s i b l e hour dream c r o s s wait r i ng ” , ”a bu i l d i ng o f vast

p ropor t i ons ” , ” (admit−>r e j e c t) someone to the p r o f e s s i o n ”

92 91 ” a f t e r u s e f u l surrounded sat mixture l i m i t e d ” , ” r u f f l e

somebody ’ s composure” , ” the farmers overcropped the (land−>

Sa in t K i t t s and Nev i s) ”

93 92 ” r e l a t i o n s h i p bra in r e p r e s e n t d i s c o v e r ” , ”The student rewrote

h i s t h e s i s ” , ” t r e e s l i n e the (r iverbank−>bank) ”

94 93 ” pattern stomach thread themse lves d i s c u s s i o n immediately ” , ”

the Welsh coas t ” , ” p l e a s e mark the (i nd iv idua l−>cau sa l agen t)

pages ”

95 94 ”young s i n g l e wise ” , ” (p it−>opponent) plums and c h e r r i e s ” , ”

the engine i s i d l i n g ”

96 95 ” rod evening welcome” , ” This statement mi s r ep r e s en t s my

i n t e n t i o n s ” , ” (don−>s c a r f) t get in a stew ”

97 96 ”wave than pack hang t r a v e l hunt” , ”A hot soup w i l l r e v i v e me

53

” , ”Where do these books (go−>act) ”

98 97 ” a l l pond window degree ” , ” Char l i e l i k e s to play Mary” , ” l e t

s g ive i t a (whir l−>sp inner) ”

99 98 ” cons id e r brought f i f t h tube equipment win” , ” sp in a co in ” , ”

the (court−>bench) s e t a s i d e the c o nv i c t i o n ”

100 99 ”unknown part s t r ength broke ” , ” aver t a s t r i k e ” , ” (play−>

ac t i on) a joke ”

54

References

Abdulaziz S Almazyad, Yasir Ahmad, and Shouket Ahmad Kouchay. Multi-
modal captcha: A user verification scheme. In Information Science and
Applications (ICISA), 2011 International Conference on, pages 1–7. IEEE,
2011.

Henry S Baird and Terry P Riopka. Scattertype: a reading captcha resis-
tant to segmentation attack. In Electronic Imaging 2005, pages 197–207.
International Society for Optics and Photonics, 2005.

Elie Bursztein, Steven Bethard, Celine Fabry, John C Mitchell, and Daniel
Jurafsky. How good are humans at solving captchas? a large scale eval-
uation. In Security and Privacy (SP), 2010 IEEE Symposium on, pages
399–413. IEEE, 2010.

Elie Bursztein, Matthieu Martin, and John Mitchell. Text-based captcha
strengths and weaknesses. In Proceedings of the 18th ACM conference on
Computer and communications security, pages 125–138. ACM, 2011.

Monica Chew and J Doug Tygar. Image recognition captchas. Information
Security, pages 268–279, 2004.

Christoph Fritsch, Michael Netter, Andreas Reisser, and Günther Pernul.
Attacking image recognition captchas. In Trust, Privacy and Security in
Digital Business, pages 13–25. Springer, 2010.

Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica
und verwandter systeme i. Monatshefte für mathematik und physik, 38(1):
173–198, 1931.

Rich Gossweiler, Maryam Kamvar, and Shumeet Baluja. What’s up captcha?:
a captcha based on image orientation. In Proceedings of the 18th interna-
tional conference on World wide web, pages 841–850. ACM, 2009.

Carlos Javier Hernandez-Castro, Arturo Ribagorda, and Julio Cesar
Hernandez-Castro. On the strength of egglue.

David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen logik.
Berlin, Heidelberg, 1928.

55

Graeme Hirst and Alexander Budanitsky. Correcting real-word spelling errors
by restoring lexical cohesion. Natural Language Engineering, 11(01):87–
111, 2005.

Pawe l Lupkowski and Mariusz Urbanski. Semcaptcha—user-friendly alter-
native for ocr-based captcha systems. Speech and Language Technology,
11:278–289, 2008.

John McCarthy. Review of the emperor’s new mind by roger penrose. Bulletin
of the American Mathematical Society, 23(2):606–616, 1990.

M Mehra, M Agarwal, R Pawar, and D Shah. Mitigating denial of service
attack using captcha mechanism. In Proceedings of the International Con-
ference & Workshop on Emerging Trends in Technology, pages 284–287.
ACM, 2011.

George A Miller. Wordnet: a lexical database for english. Communications
of the ACM, 38(11):39–41, 1995.

Greg Mori and Jitendra Malik. Recognizing objects in adversarial clutter:
Breaking a visual captcha. In Computer Vision and Pattern Recognition,
2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 1,
pages I–134. IEEE, 2003.

Gabriel Moy, Nathan Jones, Curt Harkless, and Randall Potter. Distortion
estimation techniques in solving visual captchas. In Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE
Computer Society Conference on, volume 2, pages II–23. IEEE, 2004.

Roger Penrose. The emperor’s new mind: concerning computers, minds, and
the laws of physics. Oxford University Press, 1999.

Hilary Putnam. Models and reality. The Journal of Symbolic Logic, 45(03):
464–482, 1980.

Narges Roshanbin and James Miller. A survey and analysis of current captcha
approaches. Journal of Web Engineering, 12(1-2):1–40, 2013.

Steven A Ross, J Alex Halderman, and Adam Finkelstein. Sketcha: a captcha
based on line drawings of 3d models. In Proceedings of the 19th interna-
tional conference on World wide web, pages 821–830. ACM, 2010.

56

Amalia Rusu and Venu Govindaraju. Handwritten captcha: Using the dif-
ference in the abilities of humans and machines in reading handwritten
words. In Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004.
Ninth International Workshop on, pages 226–231. IEEE, 2004.

John R Searle. Minds, brains, and programs. Behavioral and brain sciences,
3(03):417–424, 1980.

Alan M Turing. Computing machinery and intelligence. Mind, pages 433–
460, 1950.

Alan Mathison Turing. On computable numbers, with an application to the
entscheidungsproblem. J. of Math, 58:345–363, 1936.

Steven Vercruysse. Wordvis: the visual dictionary. http://wordvis.com/,
2010.

Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford.
Captcha: Using hard ai problems for security. Advances in Cryptol-
ogy—EUROCRYPT 2003, pages 294–311, 2003.

Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and
Manuel Blum. recaptcha: Human-based character recognition via web
security measures. Science, 321(5895):1465–1468, 2008.

Amber Wilcox-O’Hearn, Graeme Hirst, and Alexander Budanitsky. Real-
word spelling correction with trigrams: A reconsideration of the mays,
damerau, and mercer model. Computational Linguistics and Intelligent
Text Processing, pages 605–616, 2008.

Rong Zhao and William I Grosky. Negotiating the semantic gap: from feature
maps to semantic landscapes. Pattern Recognition, 35(3):593–600, 2002.

57

