
Abstract

My goal for the semester was to create a game belonging to a favorite genre of

mine, roguelikes. Requirements include not using available roguelike libraries,

and being viable for web deployment.

Introduction
RogueScape is a game written in Java, belonging to the “roguelike” genre. While

the goal of developing my own roguelike without using libraries has remained the

same, the tools of implementation have changed significantly. What was once

painstaking development in JavaScript and HTML5 has been much more

enjoyable after switching to Java. I challenged myself to learn something new,

and I have. I’ve learned to use the right tool for the right job. RogueScape is far

from complete, but it’s functional and I’m proud to have it as a pet project in the

future.

Problem Scope
RogueScape does not particularly address any problems, besides needing a project

for my capstone.

 Requirements

I am my own client for RogueScape. The primary requirement for the game is that

it be classifiable as a roguelike when all was said and done. According to the

Berlin Interpretation, I believe RogueScape satisfies this requirement. Shallow

and mindlessly simple as it currently is, it fits the interpretation.

Other requirements I’ve set for myself include not using available roguelike

libraries, and being viable for web deployment. Other than an open source library

called AsciiPanel, provided by fellow GitHub user trystan, all work has been

done by and for myself.

Planning

Throughout the development of RogueScape, I’ve tried to model my engine to

allow for the development of key features found in other roguelike games. This

includes planning for graphical tile sets, items, inventories, combat, actions, and

other events. The path was laid out for me; all I had to do is find out how I’d like

to pave it.

The Berlin Interpretation
As previously stated, the requirements for a roguelike are practically prescribed

by the genre itself. The Berlin Interpretation was created at the International

Roguelike Development Conference 2008 to define “Roguelike.”

Features from this interpretation that I’ve incorporated into the requirements for

RogueScape include:

 Random Environment Generation – Every floor of the dungeon is

procedurally generated.

 Permadeath – While death hasn’t quite made it into the game, it would

be permanent should it happen.

 Turn-based – Every action in game constitutes a turn, and an infinite

amount of time is allowed between turns.

 Grid-based – The dungeons are created on a grid around which entities

navigated.

 Resource management – Living entities in the game have health that

they must maintain, else perish.

 Hack’n’slash – The bulk of the game is slicing through dragons by

running into them headfirst. Killing monsters is a core feature.

 Exploration and discovery – Unfortunately my algorithm for lighting

only places the player been to or can see is dysfunctional, but was an

intended feature.

 ASCII display – Accomplished thanks to the AsciiPanel library. My

previous solution was reasonable but clunky.

 Dungeons – The game contains dungeons which are procedurally

generated.

Design
Nearly every class was derived inherently or created specifically to support one of

two key interfaces: Entity and Screen.

Entity objects represent everything that can be seen or used in the game: a tile in

the dungeon, a player, or an item on the ground. These things all have

representations, names, traits, and even the ability to affect each other.

Meanwhile, Screen objects handle the interfacing of the player’s actions with the

logic game itself. Each screen has a purpose, a start screen, a player screen, an

options screen, and even a death screen. A screen takes input in, evaluates the

change in game state, and returns an appropriate screen. It is very analogous to the

REPL (read-evaluate-print loop) design found in Lisp languages.

The hardest part of design, the only aspect in which I’m disappointed in my

progress, is theme and content. The game is lacking of a storyline, characters,

items, etc. respective to a particular theme and age.

Dungeon Generation

Dungeon generation turned out to be a tricky process. My algorithm boiled down

to a few simple steps:

 Fill in the grid with stone

 Carve out an appropriate numbers of rectangle rooms of appropriate size

 Connect rooms with corridors so that none are unreachable

 Place doors at the ends of each corridor, and stairs up and down

somewhere reachable.

 Populate the dungeon with monsters.

An example:

Development Process
I’ve tried to model my development process after the agile method. I believe I

could have accomplished more had I stuck to the this agile method better by

making more use of techniques such as task analysis and estimation, and burn up

charts. However, due to a vast base feature set and a limited time frame, the order

in which features were developed has been more or less prescribed by the nature

of the project.

My development cycle consisted mostly of developing a core feature, testing its

integration, debugging, then moving on to the next required feature. The first

important features included dungeon generation, living entities such as players

and creatures, and handling user input.

Another hurdle in the development process was trying to use unfamiliar

technologies. The initial goal of using HTML5 and JavaScript was admirable, but

difficult. After changing gears more than halfway through the semester, I was able

to accomplish more than I had to date by using Java.

My work schedule consisted of working on the project anytime I found while

trying to keep up in my other classes.

Analysis, Results, Discussion

RogueScape works. It’s enough to be considered a roguelike. It’s deployable to

the web via applets, and has been written without the use of roguelike libraries.

While I have not accomplished as much as I hoped to, I have learned a lot.

The game is available at https://github.com/dmsalsman/RogueScape and is open

source under the permissive MIT license.

My only regret in this project is not having a smaller workload.

References

Berlin Interpretation

http://www.roguebasin.com/index.php?title=Berlin_Interpretation

AsciiPanel

https://github.com/trystan/AsciiPanel

https://github.com/dmsalsman/RogueScape
http://www.roguebasin.com/index.php?title=Berlin_Interpretation
https://github.com/trystan/AsciiPanel

