
MOGUL 
A TV News Show Simulation Game

Overview 
- A simple prototype of a simulation game, in the vein 

of Prison Architect or Theme Hospital, concerning a 
weekly news show 

- The player must balance concerns of audience 
share, finance, and advertiser relations to avoid 
going under. 

- (The ultimate scope of the project is much more 
ambitious than the requirements of the prototype 
shown here today.)

Methodology 
- The prototype is written in Java + Swing/AWT. 
- Development team: one person, working on an original 

engine for an original design. 
- (This was perhaps a suboptimal development choice.) 
- Major problems arose from doing the entire thing from 

the ground up; it was too complex to justify not working 
in a team.

Features 
(in the prototype) 

- Employee management (hiring and firing) 
- Basic finance interaction — accept ad contracts 
- Journalists research stories 
- Arrangement and submission of each week’s show

Future Development 
- Advertisers react to stories about them and may pull 

support if cast in a negative light 
- Staff have satisfaction meters, based on 1) how much 

their work is utilized and 2) their perception of the 
player’s managerial integrity (Journalists want truth, 
Lawyers want stories that maintain advertiser relations) 

- Staff “level up” over time and get better at their jobs but 
become more expensive 

- Specific levels with restrictions on e.g. number of staff, 
available contracts, etc. 

- Tuning; the intent is to make the difficulty of managing 
the conflicts of privatized, ad-driven news apparent 
through difficulty in the game

Design 
- The design of the game — many views on a single 

simulated game state — lent itself very well to MVC and 
the design doc was written with implementation notes 
keeping this in mind 

- Most of the game is built on the Observer pattern; 
towards the end, Singleton (for the game state) and 
Factory (for stories and staff) were bolted on to address 
parts of the design for which I didn’t have a planned 
implementation 

- Notably, the graphics code did not have implementation 
details due to my unfamiliarity with the field (which is part 
of why it ended up as it did)

Results 
- Having a near-complete plan for the implementation 

written from the start was very helpful 
- Not being familiar with graphical coding was not; this 

was the first time I had to write complex custom view 
code from scratch, along with matching input handlers 

- As the design wasn’t based on an existing ruleset I 
occasionally had issues researching how to do specific 
things 

- No time or effort spent refactoring at all; it was enough of 
a hassle getting the thing to run at all


