

Keith Schneider
4/29/2014

Northern Associates Incorporated

Core Logging
Application
Project Final Documentation

UAA CSCE 470 Senior Capstone Project

Spring 2014

Core Logging Application

Project Final Documentation 2 | P a g e

Table of Contents
Abstract ... 3

Introduction .. 3

The Android Data Collection Application .. 3

Description of Planning Process .. 3

Requirements .. 4

Description of Design .. 7

Controls ... 7

Parent Views ... 7

The Model ... 7

Software Development Process .. 8

Analysis, Results, Discussion ... 8

Conclusion and Lessons Learned .. 9

Core Logging Application

Project Final Documentation 3 | P a g e

Abstract
The Core Logging Application is an Android based program that enables geologists to record data about

core, RC and field samples. The application provides real-time quality control and data validation to

ensure data integrity. The application was designed to integrate into existing data frameworks and

provide to the collected data

Introduction
The NAI Geologic Logging Suite enables rapid logging of core, RC, and field samples. Providing near real-

time dissemination of information through a local or global system allows for rapid decision making in

the field or remotely based on the most current data available.

The ability to log straight to digital has demonstrated up to a 50% reduction in working hours, and

reduced latency in the flow of information from data-collection to data-analysis in some cases by weeks

to months. Geologic data collection lends itself to massive and complex data structures which the

loggers are not typically aware of, this leads to time consuming and complex problems when

transferring data from paper to digital. With real-time QC and recording data in a valid format from the

start, digital logging saves frustration and man-hours for loggers, database administrators, analysts, and

decision makers.

The Android application is part of a larger suite consist of three major components, an Android Tablet

application, a Microsoft Excel component, and a master database. Only the tablet application will be

considered for the purposes of this document.

The Android Data Collection Application
The Android tablet application allows loggers to collect geologic data and provides real-time QC. The

straight to digital format enables data collected to be quickly checked by a database administrator, and

to be put in the hands of decision makers.

Features

 Straight to digital Logging

 Real-time QC

 Integrated photos with annotation

 Bar-code scanning for laboratory samples

 Alternative interfaces for logging Core, RC, and Orientation

 The ability to transfer files in the field via USB, SD-Card, WiFi or Bluetooth

Description of Planning Process
The planning process for this iteration, involved consulting with my employers and clients. A list of

requested changes and new features where categorized given priorities. One challenge faced in the

planning process is that new requests for features or changes to existing data structures continue to

come in, so the plan must be fluid and allow for additions and new priorities.

Core Logging Application

Project Final Documentation 4 | P a g e

I used a system of nebulous units of time (NUTS) similar to the Agile method to assign approximate

values to the individual user stories. The order in which user stories where implemented was based

however on client priority.

Requirements

The original requested features list

Feature Requested Description NUTS Category

Broadcast Master LUT Enable Bluetooth Transfer of Files and
Lookup Tables in App to all paired
devices

3 Admin

Change LUTs In App Ability to modify, change, or delete
lookup tables.

2 Admin

Password Protect the
Admin Interface

Create a password interface for
administrators

2 Admin

Auto-generate the first
record

Create the first record if non-exists, to
prevent user frustration, or clearly
indicate that no record exists.

1 Data

Collars Information Allow for modification of the collars
information table inside the
application.

2 Data

Create User Level
Documentation

Create Users Manual, port to HTML
and provide links within the program
that point to the correct document.

6 Documentation

Administrative Toggle For
Sample QC

Toggle strict no-advance until right/QC
on and off.

3 QC

Alt and Min Overlaps Do not allow over laps 2 QC

Assign Sample ID Ensure the user knows that the sample
ID has been advanced, disable multiple
clicks on the same record.

2 QC

Auto fill Toggle for sample
depths

Toggle auto fill for sample depths.
Delete footages for standards, and
blanks upon selection.

1 QC

Background QC Thread Runs Extensive QC routines that need
to be off the main thread for
responsiveness.

4 QC

Clasts QC Clast Max/Average size QC 2 QC

Samples Sheet Extensive and ruthless QC, on sample
types and depths

3 QC

User Run Sample QC Manually Run Record By Record QC for
Samples

2 QC

Angular Measurement QC Provide Notification if greater than the
field value.

1 QC/Real-time

Core Logging Application

Project Final Documentation 5 | P a g e

From and To Fields If From > To, provide a clear and
persistent indication.

1 QC/Real-time

Linked Percentage Fields Provide Error notification on sum !=
100%

1 QC/Real-time

Percentage Fields Provide Error notification on > 100% 1 QC/Real-time

Rec/RQD Pct Provide Error notification in > 110% 1 QC/Real-time

VS Point Limit Decimal Places to 2/Real time QC
on input values

2 QC/Real-time

Dirty Bit for Extensive
Record QC

Use a dirty bit to indicate whether or
not the record has been QC'd for
process intensive QC items.

4 QC/Real-time?

Overlapping Records Provide Notification/ (Potentially a
Toggle) that forces correction of
overlapping records.

3 QC/Real-time?

From and To in database Only record metric, eliminate
redundant fields. Use views/queries to
record information for alternative
applications.

3 Structural

HCL/Chemical Add expandability for additional tests
such as Kspar staining.

2 Structural

User Accounts Create individual user profiles 3 Structural

Accentuate Field Colors Create greater contrast in field colors,
so they can be easily distinguished.
Also move focus from text field if a pull
down is selected.

3 UI

Action Icon Make the Action Bar Icon return to the
home screen

1 UI

Depth Auto Fill Toggle for
all records

Provide a toggle that can turn on/off
depth auto fill

1 UI

Digital Manuals Links to HTML based navigable
manuals

3 UI

From and To UI Allow for input in desired units and
perform a behind the scenes
conversion keeping sig-figs. But
Display only two sig-figs.

2 UI

Help Buttons Use Help Buttons where appropriate 2 UI

Home Screen Display Hole_ID and Loggers_Name.
Provide a clearer interface that makes
it explicit that the user must first click
on the log which they want to open.

1 UI

Core Logging Application

Project Final Documentation 6 | P a g e

List View QC Flag Flag records to check with a visual
indicator in the List View

2 UI

Log Creation Prompt Adjust the log creation prompt to
separate the first and last name field.
Provide help content to assist in
inputting proper user syntax. Hole ID
Prompt PP-YY-###. Record User Initials
for future use.

1 UI

Non-User Input fields Make it clear, if it is not a user input
field

1 UI

Opening Logs Clearly Differentiate Between RC and
Core Logs. Remove separate open log
button, and have the computer
determine the appropriate action.

1 UI

Orientation Help Button with links to the manual 2 UI

recRQD Converter Limit to appropriate digits of precision 1 UI

Split a record Provide a long click option to split a
record at a given depth. Providing
identical copies with different from
and to fields

3 UI

Struct Int Default Cursor position to from field 0 UI

Swipeable Views Spreadsheet View(editable?)/QC
View/ Data-entry View

3 UI

Tab Order Ensure Correct Tab Order on All
Screens

1 UI

Alt and Min Log/Level memory for which views are
open

2 UI/Structural

Customizable Side View Allow users to toggle on and off side
view fields.

3 UI/Structural

HCL Depth Add Depth Field and Mimic MagSusc 1 UI/Structural

MagSusc Add flexibility for depth only and by
interval

2 UI/Structural

MagSusc
Device/Units/Comments

Add chooser for MagSusc Device/Units
and Comment Field.

1 UI/Structural

Oxidation Screen Style Above Intensity, Mimic Alt/Min 2 UI/Structural

Core Logging Application

Project Final Documentation 7 | P a g e

Additional features added during the process

Feature Requested Description NUTS Category

Quick Log Table Create a new data sheet that includes
a quick-log.

4 UI/Structural

Multiple Photo Support Create a widget that allows multiple
photos to be attached to a record.
New Photo/Edit/Delete/View

3 UI

Certificate Based
Licensing

Create an encrypted license system
that is hardware specific.

3 DRM

Modify Fields and
Calculations for Vein_Int

Add fields and modify calculations 2 Structural

Specific Gravity Create a new datasheet to record
multiple specific gravity
measurements per record and
additional QC functionality.

2 UI/Structural/QC

Description of Design

Controls
Controls are built upon a common interface that contains both the control component, and QC code
that is particular to that type of control, or data field. This allows for the control itself and the code to
vary independently and promotes reuse. Each control has a reference to it parents data structure and
registers as an observer to be notified of specific changes in the structure.

Parent Views
The parent views consist of two major visual components. A navigational component which allows for
navigation through the data structure. And a view consisting of the various controls necessary to make
modifications to the actual data.

The parent view also contains data QC component that can check the data set as a whole for validation
errors that can only be found in context. Validation errors can then be forwarded to the appropriate
controls to notify the logger, that the data need further attention.

The Model
The database is based on the Open-Source SQLite3 format, and contains the recorded data. Queried

data is accessed through a custom pointer class that navigates the data structure, performs updates to

the data, and notifies registered listeners of changes. The model itself contains some inherent QC that

enforces validation for critical information to prevent the dataset from being corrupted.

Core Logging Application

Project Final Documentation 8 | P a g e

Software Development Process
The software is primarily implemented using a model view controller (MVC) paradigm. While specific

functionality for controls are implemented as a component based method. This allows specific

functionality to be implemented once, and then wrapped around a control.

When implementing new functionality such as a QC routine or a generic function, the widget base class

is first extended. The base class already has logic built-in that knows how to interface with the data

structure, and automatically registers to be notified of changes. The object then can listen and respond

to either event based (user initiated) changes, or wait until notified by the data-structure.

UI elements are primarily implemented in XML, and are modified using a WYSIWYG editor, however

within the application there are times when this is not feasible. In certain circumstances views or

controls must be generated dynamically in code.

When structural changes to the database are required it has system-wide repercussions and must be

implemented throughout the data suite. This requires involves implementing the imposed changes and

testing the results in the application, and the rest of the system. Any time such a change is made all

affected clients must immediately update all software used, so great care is taken with this kind of

change.

Analysis, Results, Discussion
Overall the system that I have developed is both flexible and extensible. The modular bolt on

component model for adding functionality to controls works well, and from a coding perspective

minimizes redundant work. Implementing the UI in XML is a great benefit that comes along with the

Android API, however for an application that is this large with a great many views it can be very time

consuming. Presently all views are implemented for a 10.1" screen. However, it would be a huge

undertaking to implement these views in a manner that would accommodate all form-factors, and

would greatly increase the cost of any future modifications.

The programs inherent tie to the structure of the database is also a significant hurdle, where changes

have serious implications. This is functional and economically viable on the scale that the application is

deployed, but if this where to serve a significant number of clientele with unique needs, it would

probably require a full-time dedicated support staff to maintain the application.

One proposed solution to both the UI and Structural issues would be to dynamically generate the

required information at run-time using a scripting language. I actually accomplished this in a previous

generation of the application, but it increases the code complexity, and discourages customized

routines. However I would eventually like to come up with a data-descriptor that could be implemented

at all levels of the application suite.

Core Logging Application

Project Final Documentation 9 | P a g e

Conclusion and Lessons Learned
The application itself is field tested and proven, but will be constantly under development and updating

for the lifetime of its usefulness. Every step I take to ensure maximum reuse of code, and general

functionality has paid off in spades. There are certainly changes to the code base that could greatly

extend the usefulness of the application such as employing a scripting language that defines the

programs operation. The goal would be to maintain maximum client-centric customization, while

generalizing the implementation. Previous attempts at this have shown that it comes at a cost,

particularly in terms of runtime efficiency, and abandoning certain platform abstractions that provide

convenient controls for styles and formatting.

Developing this application has impressed on me the importance of UI design, and especially in a

resource constrained environment. Requests for structural changes to the application come almost

exclusively from upper management, while request from the users are almost always UI centric. There is

always a balance that has to be struck between the two, but in many ways the second is more

important. If using the application becomes a frustrating experience, then its won't survive very long.

