

Research Focus: Deep representation learning Rare event prediction Long-tailed learning User-friendly multiple clustering

Juhua Hu

Assistant Professor of Computer Science and Systems Director of Center for Data Science University of Washington, Tacoma https://faculty.washington.edu/juhuah/

👌 advata

Infoblox 💸

CENTER FOR DATA SCIENCE UNIVERSITY of WASHINGTON | TACOMA

School of Engineering & Technology

W

Rare Event Prediction

Events of interest are often very very infrequent

<0.9% patients developed Septic Shock on a daily basis [data collected 2012-2019]

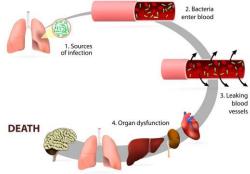


Figure 1. Sepsis process. Adapted from 'Disease profile: Sepsis' by Nicholas Parry, 2019, healthissuesindia.com.

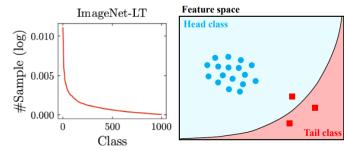
Multi-modal Representation Learning

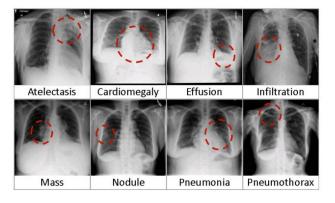
Vital Signs	Static Profile	Cumulative Exposures	Laboratory Results
\ /		iiii	<u>5</u>
Crucial medical signs that indicate vital functions, e.g., heart rate, temperature, diastolic blood pressure etc.	Initial physiology from first 48 hours and patient factors, e.g., age, mechanism of injury, first systolic blood pressure etc.	Summary of events, e.g., surgeries, cumulative sum of fluid bolus volume, etc.	Data from laboratory, e.g., blood urea nitrogen, white blood cell count, bicarbonate, etc.
rauma Patients. In: Proceedings of the IE i2. tewart, K. Stern, G. O'Keefe, A. Teredesai 2023 Congress in Computer Science, Cor erence on Health Informatics and Medica	RL: Nightly Profile Representation Learnir EE International Conference on Big Data (is and J. Hu. Multi-Subset Approach to Ear myuter Engineering, & Applied Computin il Systems (HIMS'23), Las Vegas, NV, 2023 or, and G. O'Xeefe. Sub-Sequence Graph R Grae, In: Proceedings of the IEEE Internat	BigData'23), Sorrento, Italy, ly Sepsis Prediction. In: g (CSCE'23) - The 9th ; pp.1335-1341. epresentation Learning on	

High Variability Data for Dynamic Risk Prediction in Critical Care. In: Proceedings of the IEEE International Conference on Big D. (BigData'22), Osaka, Japan, 2022, pp. 2082-2092. T. Stewart, B. Yu, A. Nascimento, and J. Hu. Enhancing Peak Network Traffic Prediction via Time-series Decomposition. arXiv

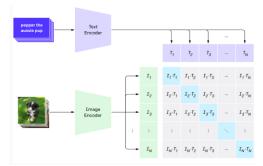
T. Stewart, K. Stern,

Prediction in ICU Tra


2023, pp.1843-1852


K. Ewig, X. Lin, T. Ste Proceedings of the 2 International Confer A. Teredesai, S. Hua

preprint arXiv:2303.13529, 2023.
B. Yu, G. Graciani, A. Nascimento, and J. Hu. Cost-adaptive Neural Networks for Peak Volume Prediction with EMM Filtering. In: Proceedings of the IEEE International Conference on Big Data (BigData'19), Los Angeles, CA, 2019, pp.4208-4213.



- > Limited data for medical images
- > Severely limited data for tail classes

Language-Supervision

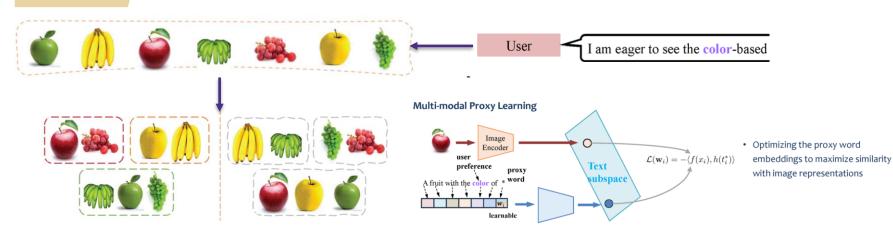

https://openai.com/index/clip/

Figure 1: Text-guided mixup allows semantically similar classes to be mixed more frequently (e.g., 'tiger' as a tail class is stretched to the directions of 'leopard' and 'cat', where 'cat' as a head class can help).

R. Franklin, J. Yao, D. Zhong, Q. Qian, J. Hu. Text-Guided Mixup Towards Long-Tailed Image Categorization. To appear in: Proceedings of the 35th British Machine Vision Conference (BMVC'24), Glasgow, UK, 2024.
J. Wang, Y. Xu, J. Hu, M. Yan, J. Sang, Q. Qian. Improved Visual Fine-tuning with Natural Language Supervision. In: Proceedings of

the International Conference on Computer Vision (ICCV'23), Paris, France, 2023, pp.11865-11875.

User-friendly Multiple Clustering

J. Yao, Q. Qian, and J. Hu. Multi-Modal Proxy Learning Towards Personalized Visual Multiple Clustering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'24), Seattle, WA, 2024, pp.14066-14075. J. Yao and J. Hu. Dual-disentangled Deep Multiple Clustering. In: Proceedings of the SIAM International Conference on Data Mining (SDM'24), Houston, TX, 2024, pp.679-687.

J. Yao, E. Liu, M. Rashid, and J. Hu. AugDMC: Data Augmentation Guided Deep Multiple Clustering. Procedia Computer Science, 222 (2023): 571-580.

