
Page 1 of 35

UNIVERSITY OF ALASKA ANCHORAGE

CSCE A470

CAPSTONE PROJECT

The Android Textbook APP

Author:

Yu Jian Zhao

Supervisor:

Prof. Kenrick Mock, PhD

Anchorage AK, May 2016

Page 2 of 35

© Copyright 2016

by

Yu Jian Zhao

yjzhao@alaska.edu

Version 0

Page 3 of 35

Abstract

With the capacity and capability of our computing device increases every year, the mobile application

market has been growing exponentially with millions of Android and IOS users. The goal of this

project is to design and build an Android application that allows college students to trade their used

textbooks which will save them a lot of time and money. This project includes front-end client which is

the Android application itself that will be discussed in details in this report, and back-end server that

will be implemented by my project coworker Gabriel Esposito which includes a MySQL databased and

REST API implemented in Python that will be interfacing with the client.

Acknowledgement

During the development of the application I received helps from various people. Without them I would

not have completed this project.

I would like to thank my project coworker Gabriel Esposito for this dedication on the server side and

helping me bridging the Android client with the server.

I would like to thank my project supervisor Dr. Mock for supervising our project, provided server to

host our client data, and helped us on numerous occasions.

I would like to thank my capstone professor Dr. Cavalcanti for cultivating us on the subject of capstone

project and other interesting topics that he had talked about in the class.

I would also like to thank all UAA professors that taught me new skills and knowledges. Without them

I would not be able to complete this project and this program.

Page 4 of 35

Table of Contents
Chapter 1 Introduction ... 4

1.1 Introduction .. 4

1.2 The Application .. 5

1.3 Motivation .. 8

Chapter 2 System Integration, Modelling and Methodology ... 9

2.1 Introduction .. 9

2.2 The System Architecture .. 10

2.3 Android Client ... 10

2.4 Google Endpoint Services .. 11

2.5 Server and Data .. 11

2.6 Agile Methodology .. 12

2.7 Gantt Chart ... 14

Chapter 3 Design and Testing ... 15

3.1 Introduction .. 15

3.2 Design ... 15

3.3 Testing ... 19

Chapter 4 User’s manual ... 20

4.1 Product Introduction ... 20

4.2 Installation .. 20

4.3 Use and Navigation .. 21

4.4 Services and Permissions .. 28

4.5 Data and Privacy ... 28

4.6 Help .. 28

Chapter 5 Conclusion ... 29

5.1 Project Result .. 29

5.2 Future Development ... 29

5.3 Conclusion .. 30

References

Appendix A

 UML Diagram

Appendix B

 Initial Source Code

Page 5 of 35

Chapter 1

Introduction

1.1 Introduction

The market for mobile apps are increasing exponentially. 178 million people in the US owned

smartphones, 73.6% mobile market penetration according to comScore based on November 2014 data.

Smartphones are a mature market in the US [1]. With the capacity and capability of our computing

device increases every year, mobile apps are also having more and more functionalities. Mobile apps

are now capable of doing so many things. It is important for businesses to consider and adapt mobile

platform to their services. If Wells Fargo hadn't gone out mobile app five years ago, it would be out of

business, said its CEO and Chairman John Stumpf in 2015 [2]. Particularly, mobile app market in

android has boosted a lot, 5% more than IOS’s. Android developers saw a 6% salary increase, but it

was only a 1% hike for iOS developers, survey finds [3].

Page 6 of 35

[1] Figure 1.1: Flurry Mobile App Trend

1.2 The Application

With mobile market growing and we see the need of a good mobile app for students to trade textbooks,

we are purposing to make an Android App that will help college students to buy and sell their used

textbooks between students.

The application will be similar to Craigslist but more powerful in terms of usability and user-friendly

since we will be using barcode scanner to automatically populate book data. An in-app non-real time

communication will also be possible. Users will be able to search nearby sales posted by other students

with the ability to sort by college courses if it is provided by the seller. We will be using Agile

Software development [4].

The following diagrams provides a good overview of the application infrastructure.

Page 7 of 35

Python Server/
SaaS (Google

Cloud)

Android Client

Google Books Data
Store

Google Books API

Adapter

Figure 1.2: Proposed System Structure

Scan or manually
enter ISBNSell

Google Books API
returns book data,
system populates

returned data

Ask user to
populate <Price>,
<School>, <Course

Code>, <Notes>

Publish

Ask user to
populate <title> ||

<ISBN> || ..
Buy Search

Search Sales Nearby

Figure 1.3.1: Proposed Workflow

Page 8 of 35

Figure 1.3.2: Proposed Workflow and GUI

Page 9 of 35

1.3 Motivation

The motivation behind this application is that we as students are experiencing and seeing students

paying high price for their textbooks and sell them back at a much lower price to bookstore or online

retailers who then sell these textbooks back to other students at two or more times of the buyback price.

I see this is just plain wrong that college students with no or part-time job carrying a stack of student

loans paying unreasonable price for their textbooks, so I was thinking to make a mobile app to serve as

a platform for students themselves to trade their textbooks. Mobile device is so common and frequently

used today especially among students, so we believe it will be a good platform for the application. The

application will be completely free to use but transaction of the textbooks will be between students the

app itself does not handle payments of any type.

[5]Figure 1.4: Textbook prices have risen higher than overall inflation for the past three decades

Page 10 of 35

Chapter 2

System Integration, Modelling and

Methodology

2.1 Introduction
The Android application, namely, the client will be implemented using agile methodology allowing

quick iterations of software development cycle, finding bugs and design flaws early on the process,

hence improve programmer and customer satisfaction. HTTP protocol will be used as communication

protocol between the client and server. Various Google endpoints services will be used to assist

accomplishing the app functionality as well. All these components will be explained in details in next

few sections.

Android Studio will be used to develop the android application. Dr. Mock has provided us a server for

the back-end, and will be configured and used by the client. The android client requires minimum

Android SDK version 15 and targeted at version 23.

2.2 The System Architecture
We will be using server-client model for the system. The android application will be the client and the

server is what Dr. Mock provided for us which is a Linux server (Ubuntu) along with Apache to handle

HTTP request, MySQL for database, Python for back-end scripting. Google Books API, Google Play

Location Service, and OAuth (Google+) will be used in the application. The diagram below presents

the overall system architecture:

Page 11 of 35

Figure 2.1 System Architecture

2.3 Android Client

The service that our android application provides, is very similar what Craigslist provides. However,

our application is mobile and should provide 5-star user experience. Thus, a function that allows user to

populate book information should as easy as possible. The solution is to use ISBN as a key to query

public book library to retrieve book information. In this approach, we will need to use Barcode Scanner

library and Google Books API.

Barcode Scanner is an open source project that inherit from other open source projects to utilize

Android camera to scan and interpret barcode. We will show the users an option to scan ISBN barcode,

and directly retrieve ISBN. The interpreted ISBN will then be passed into the data entry activity along

Page 12 of 35

with Google Books API it will auto-populate all the relevant information about the book, which will be

discussed in the next section.

2.4 Google Endpoint Services

We will use three Google endpoint services: Google Books, Google Play Location Service, and OAuth

with Google+. We may also use Google Map to show all sales in the map.

Google Books API powered by Google, will provide a nice and simple programming interface to the

android client to query book information based on ISBN or other book attributes such as author and

title. For our Android client, the API will only be used to query book data by ISBN.

One of the unique features of mobile applications is location awareness. Mobile users take their devices

with them everywhere, and adding location awareness to your app offers users a more contextual

experience [6]. The application will provide a function to search all nearby sales. To do that we will

need to get and store user location data whenever they post a new book sale. Google Play Location

Service will be used in our client side to fetch device's location data. It is preferred over Android

framework location APIs as stated on Google Android Developer's website, but we will try to embed

Android framework location APIs into the application as an alternative.

Since the application doesn't require precise location data. The fused location provider in Google's

service provides the device's last known location. The fused location provider is one of the location

APIs in Google Play services. It manages the underlying location technology and provides a simple

API so that you can specify requirements at a high level, like high accuracy or low power. It also

optimizes the device's use of battery power [7]. We may also use Google Map Service for Android to

show all nearby sales by location just like how Yelp shows nearby restaurants.

2.5 Server and Data

As mentioned previously we will use MySQL for server database, configured with Apache and Linux

server. For this project, MySQL is enough to handle all the data and queries we need. Both local and

server database are needed to deliver 5-start user experience. For client data storage, we will use

SQLite Database and store the database file in user's internal storage directory. SQLite is a software

library that implements a self-contained, serverless, zero-configuration, transactional SQL database

Page 13 of 35

engine [8]. SQLite is a popular choice as embedded database because of its lightweight and easy-

configuration.

One of the difficult parts of development of this system is the synchronization between the data in the

local database and the server database. A check on the data and database schema is needed prior to

publishing stored sale data. We are also purposing an off-line publishing function, that the data user

populated in the form while off-line will be published online when their device is connected to internet.

Figure 2.2 Data Access and Synchronization

2.6 Agile Methodology

Unlike other software that have clients to provide requirements and periodic feedback during the

development process, software such Android application that will be published to the market for

general public will not get reliable feedbacks until it is published, and for this projects the requirements

are solely based on the idea and product requirements that developers created. Agile methodology is

still a good choice this project, because the size of the project is not too big that does not require much

effort into requirement analysis, and also because the application uses many third-party APIs and

libraries it will be reasonable to use “horizontal” development process, in other words, went through

the entire development process at first, and built more material on the foundation of the first iteration.

Page 14 of 35

[9]Figure 2.3 Agile Development [10]Figure 2.4 Software Release Life Cycle

Page 15 of 35

2.7 Gantt Chart

The entire project is broken down to 14 different tasks, from the creation of the project template and

Git repository to the final deliverable. The following Gantt chart shows estimated tasks timeline:

ID Task Name
Jan 2016 Feb 2016 Mar 2016 Apr 2016

1/17 1/24 1/31 2/7 2/14 2/21 2/28 3/6 3/13 3/20 3/27 4/3 4/10 4/17

1
Create project template and set up git
repository

2 Modify template to adapt to requirement

3 Implement Barcode Scanner

4
Create Query Function using Google Books
API

5 Create SQLite Local Database

6 Allowing local cache using the DB

7 Watchlist Functionality

8 In-App Messaging

9 Refresh Service

10 OnScrollRefresh

11 Swipe-delete function

12 Bridge Server Database and Android Client

13 Testing and Debugging

14 Final Deliverable

 Figure 2.5 Gantt chart

Page 16 of 35

Chapter 3

Design and Testing

3.1 Introduction
In previous chapter, we talked about the system architecture and modeling. In this chapter we will talk

about the design, implementation of the system, and software testing.

There are many existing applications in the market that already have fair amount of users. Our

application is essentially competing with them to get the same group of clients. In order to succeed the

competition, we have these ways in terms of product design to attract their or new users:

1. Provide better quality of service including easy use of the system and improvement of system

performance in different devices.

2. Provide extra functionalities that will provide benefits to the users. For example, integration

with social media, such as Facebook.

3. Supporting wider range of device and possibly platforms.

3.2 Design

Software design is the process by which an agent creates a specification of a software artifact, intended

to accomplish goals, using a set of primitive components and subject to constraints [11]. The client

application has a main panel with four tabs, one for the home section where you have action choices, to

Page 17 of 35

buy, to sell or show all nearby sales, one for watch list that lists all stared and your own sales, one for

inbox that lists all messages from other users, the a setting tab for application settings.

Figure 3.1 Application Main Panel Home

Page 18 of 35

Figure 3.2 Application Watch list Figure 3.3 Application Sale Search

Page 19 of 35

Figure 3.4 Application Publishing Sale Data Entry Figure 3.5 Application Sale Details

Page 20 of 35

3.3 Testing

Software testing is an investigation conducted to provide stakeholders with information about the

quality of the product or service under test [12]. Software testing is so important that it will literally

save you lots of money but eliminating bugs. A study conducted by NIST in 2002 reports that software

bugs cost the U.S. economy $59.5 billion annually [13].

In application testing, there are two types of testing. The first one is Black-box testing. Black-box

testing is a method of software testing that examines the functionality of an application without peering

into its internal structures or workings [14]. The second one is White-box testing. White-box testing is

a method of testing software that tests internal structures or workings of an application, as opposed to

its functionality [15]. In our product, the testing phase will be broken into three segments:

1. Test of the corrections of the functions and modules within the system, also known as White-

box testing.

2. Test of the application functionalities and GUI from user perspective, also known as Black-box

testing.

3. User acceptance test, is quite special to our product since we do not get feedback from clients

during development and testing phase, but we will rely on user feedbacks from our beta release.

Since our application is not so complicated, we are expecting the beta and stable release will not

have much difference.

Page 21 of 35

Chapter 4

User’s Manual

4.1 Product Introduction
This is an android application serves as a platform to allow college students to sell their used textbooks

online. The application user interface is easy to navigate, configure, and use. The application gives you

the functionality to retrieve book data from Google Books API by ISBN that is auto-populated by

scanning your book’s ISBN barcode, which saves students lots of time considering how much time

they would have spent on entering all the information about their textbook. More functionalities of the

application will be introduced in details in the next few sections of this manual.

4.2 Installation

You can install the android textbook app from Google Play when it is published or you may visit

developer’s website to download it manually and install it. It is recommended that you download it

from Google Play as it is much safer. When downloading it will ask your machine to give few access

permissions, such as internet and hard disk, simply allow it as the application will need these accesses

to function properly.

Page 22 of 35

4.3 Use and Navigation

The home page allows you to navigate to different

activities.

You can click on ‘I want to sell’ to navigate to a

different page where you can enter book sale data and

publish for sale.

You can click on ‘I want to buy’ to navigate to a

different page where you can search for book sales.

You can click on ‘Show me sales nearby’ to navigate to

a different page where you can find all book sales

nearby your location. This function will need access

permission to your device geolocation data.

On the right-lower corner of the home page, the ‘Email

icon’ allow you access your ‘Message Inbox’ in

shortcut.

Figure 4.1 Application Home Page

Page 23 of 35

The inbox page allows you to navigate to different

activities.

You can click on ‘My sales’ to bring up a list of sales

that you published.

You can click on ‘My watchlist’ to bring up a list of

sales that you starred (saved).

You can click on ‘My messages’ to access your

Message Inbox, to see your messages from sellers and

buyer about a particular sale.

Figure 4.2 Application Inbox Page

Page 24 of 35

The setting page allows you to control some variables

to customize the application appearance and behavior.

The ‘Privacy and Data’ section explains how data

collected by this application are used.

The ‘Legal notice’ section explains legal information

about the application in details.

Figure 4.3 Application Setting Page

Page 25 of 35

This is ‘Publishing Sale’ page that shows up after

you click ‘I want to sell’.

You can click on ‘Scan ISBN’ to scan your book

ISBN bar code by using your device’s camera. After

ISBN is retrieved, the rest of book information will

be automatically populated by querying Google

Books API using the ISBN.

Alternatively, if you were not able to use ‘Scan

ISBN’, you can enter ISBN manually and click

‘Retrieve’, and the application will try to query

Google Books with the ISBN you entered by hand.

You can then continue to populate other information

about the sale, such as price, university, course code,

and sale description.

After you have entered all the sale information, you

can then click ‘Publish’ to publish the sale.

Figure 4.4 Application Publishing Sale

Page 26 of 35

This is ‘Search for Book Sale’ page that shows up

after you click ‘I want to buy’.

In this page, you entered details about the book you

want to buy. Details entered will be used to search

book sales when you click ‘Search’. It is

recommended that you entered 1 – 2 items about

the book and search, this way you will likely get

more search results.

Figure 4.5 Application Search for Sale

Page 27 of 35

This is Book Sale details page that shows up after

you click on one of the sales you found on the

application.

This page shows details about the sale.

You can click on the ‘Conversion icon’ located on

the right-upper corner of the screen, to send a

message to the seller. You can find your conversion

(messages) in your ‘My messages’ of your ‘Inbox’

page.

You can click on the ‘Star icon’ located on the

right-lower corner of the screen, to star (save) the

sale. You can find starred sales in your ‘My

watchlist’ of your ‘Inbox’ page.

Figure 4.6 Application Sale Details

Page 28 of 35

This is an example of how you want

to send the message to the book

seller.

Figure 4.7 Application Sending Seller Message

Page 29 of 35

4.4 Services and Permissions

The application will ask to access your camera for scanning ISBN, your local device disk to store

database file, your device geolocation data to enable ‘search nearby’ function, your Google+ profile to

authenticate service, your device network to connect to the internet.

The application uses three Google endpoint services: Google Books, Google Play Location Service,

and OAuth with Google+.

Google Books API powered by Google, will provide a nice and simple programming interface to the

android client to query book information based on ISBN or other book attributes such as author and

title. For our Android client, the API will only be used to query book data by ISBN.

The application will provide a function to search all nearby sales. Google Play Location Service will be

used to fetch device's location data. Since the application doesn't require precise location data. The

fused location provider in Google's service provides the device's last known location. The fused

location provider is one of the location APIs in Google Play services. It manages the underlying

location technology and provides a simple API so that you can specify requirements at a high level, like

high accuracy or low power.

4.5 Data and Privacy

The data collected by the application are solely used for textbook sales between users. We do not use

your data for any other purpose, other than providing textbook sale information on the application.

4.6 Help

Contact application developer for additional help. You can find developer’s contact information of their

website and Google Play application page.

Page 30 of 35

Chapter 5

Conclusion

5.1 Project Result
At the end of the project, we completed most of the functions we planned both on the server and client

side. The entire project lasted 12 weeks but we still have 2 weeks to do some testing and debugging for

the final presentation on April 25th.

The growing mobile market and the convenience of mobile application makes the platform perfect for

developing some agile and useful applications. We as students understand how expensive college

education is so decided to develop an Android application that allow students to trade their used

textbooks thus save some money for them. When this application is published to the market place,

hundreds of thousands of students will be able to download and use it to their convenience and benefit,

and it likely will save them a fair amount of money and time.

5.2 Future Development
There are two aspects in regards to future development of this project, one is features, and another is

code base.

The features of this application needs to be polished and extended:

1. Swipe View List used in My Sale and Watch List Activity can be polished that the icon of the

item can be the thumbnail image of the book.

2. On the Main Activity the user should be allowed to sign out and switch to different account.

3. On Setting panel there should be option to change application permission access.

4. The view of Message Activity can be enhanced.

5. Search for textbook sales (“I want to buy” option) function can be more intuitive and user-

friendly

Page 31 of 35

6. An introduction animation can be included.

7. Integration with social media function.

The code base and the performance of the application can be optimized:

1. Many unreferenced classes and library can be eliminated.

2. Some custom libraries can classes can be simplified

3. Better handling of tasks and services

4. Better handling of threads and exceptions, which includes more clear separation of UI threads

and non-UI threads to improve user experience.

5. Better handling of debugging and testing

6. The server REST API needs to be able to handle image URL link in the request or we may to

develop Android API instead of REST.

Short Presentation Video: https://www.youtube.com/watch?v=DpWqz-uhsrY

Android client GitHub link: https://github.com/Aaron-Zhao/Textbookbns

Figure 5.1 Android Bot Figure 5.2 GitHub Octocat

5.3 Conclusion
This project has been a great experience for both me and my project coworker. I touched many areas in

Android development where I was not exposed to before. I am glad that I made my decision to make

this Android application as it practiced lots of my programming skills in the course of the development.

I also learned many new things on the server side from my project coworker as he is the person in

charge of the server side of this application. I honestly believe this Android application can make huge

contribution to the community of college students once it is published to the market and people started

using it. The future development of this project can also be a help to the community.

Page 32 of 35

References
[1] Heidi Cohen (2015). Mobile Apps In 2015: Not Just Social Media Anymore. Retrieved from:

http://heidicohen.com/mobile-app-trends-2015/

[2] Biz Carson (2015). What two 100-year-old companies — IBM and Wells Fargo — have learned

about staying relevant. Retrieved from:

http://www.businessinsider.com/ibm-ceo-ginni-rometty-wells-fargo-ceo-john-stumpf-you-cant-

protect-the-past-2015-11

[3] Patrick Thibodeau (2014). The top 10 paying IT jobs: IT careers can prove fruitful. Retrieved from:

http://www.computerworld.com/article/2489809/it-careers/the-top-10-paying-it-jobs--it-careers-can-

prove-fruitful.html

[4] Wiki (2016). Agile software development. Retrieved from:

https://en.wikipedia.org/wiki/Agile_software_development

[5] Ben Popken (2015). College Textbook Prices Have Risen 1,041 Percent Since 1977. Retrieved from:

http://www.nbcnews.com/feature/freshman-year/college-textbook-prices-have-risen-812-percent-1978-

n399926
[6] Google Android Developer (2016). Making Your App Location-Aware. Retrieved from:

http://developer.android.com/training/location/index.html

[7] Google Android Developer (2016). Getting the Last Known Location. Retrieved from:

http://developer.android.com/training/location/retrieve-current.html

[8] SQLite Org (2016). SQLite Home Page. Retrieved from:

https://www.sqlite.org/

[9] Strategybeach (2016). Agile Development Methodology. Retrieved from:

http://strategybeach.com/our-agile-development-methodology/

[10] Wikipedia (2016). Software release life cycle. Retrieved from:

https://en.wikipedia.org/wiki/Software_release_life_cycle

[11] Wiki (2016). Software design. Retrieved from:

https://en.wikipedia.org/wiki/Software_design

[12] Wiki (2016). Software Testing. Retrieved from:

https://en.wikipedia.org/wiki/Software_testing

[13] NIST Report (2016). The economic impacts of inadequate infrastructure for software testing.

Retrieved from:

http://www.nist.gov/director/planning/upload/report02-3.pdf

[14] Wiki (2016). Black-box testing. Retrieved from:

https://en.wikipedia.org/wiki/Black-box_testing

[15] Wiki (2016). White-box testing. Retrieved from:

https://en.wikipedia.org/wiki/White-box_testing

Page 33 of 35

Appendix A: UML Diagram

Book

ISBNPK

Title

Thumbnail URL

Sale

Sale IDPK

Subject

Description

Course

Course IDPK

Course Code

University Name

FK: Book ISBN

FK: Course ID

Location

Location

Device/User

IDPK

Sales

Location

Mid table (m-1)

Device ID + Sale IDPK

attribute name

attribute name

FK: Device ID

Page 34 of 35

Appendix B: Initial Source Code
 See Details: https://github.com/Aaron-Zhao/Textbookbns

/**

 * An activity representing a list of SaleItems. This activity

 * has different presentations for handset and tablet-size devices. On

 * handsets, the activity presents a list of items, which when touched,

 * lead to a {@link SaleItemDetailActivity} representing

 * item details. On tablets, the activity presents the list of items and

 * item details side-by-side using two vertical panes.

 * <p/>

 * The activity makes heavy use of fragments. The list of items is a

 * {@link SaleItemListFragment} and the item details

 * (if present) is a {@link SaleItemDetailFragment}.

 * <p/>

 * This activity also implements the required

 * {@link SaleItemListFragment.Callbacks} interface

 * to listen for item selections.

 */

 public class SaleItemListActivity extends AppCompatActivity

 implements SaleItemListFragment.Callbacks {

 /**

 * Whether or not the activity is in two-pane mode, i.e. running on a tablet

 * device.

 * Customized to always false

 */

 private static final boolean TWO_PANEL_MODE = false;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_saleitem_app_bar);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

 setSupportActionBar(toolbar);

 toolbar.setTitle(getTitle());

 FloatingActionButton fab = (FloatingActionButton) findViewById(R.id.fab);

https://github.com/Aaron-Zhao/Textbookbns

Page 35 of 35

 fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_LONG)

 .setAction("Action", null).show();

 }

 });

