
University of Alaska Anchorage

CSCE A470

Capstone Project

Android Textbook Marketplace Application

Server Design

Author:

Gabriel Esposito

Supervisor:

Dr. Kenrick Mock

Anchorage AK, April 2016

Textbook Marketplace Android Application Design

2

© Copyright 2016

by

Gabriel Esposito

Version 1.2

espogabe@gmail.com

Textbook Marketplace Android Application Design

3

Abstract

 The target of this project is to create a mobile application that will help students save money on

textbooks. With the price of textbooks increasing, many students will spend more than expected on

materials for schooling. This project hopes to provide an alternative for those students by creating a

marketplace centered on locally buying and selling at their university. It employs a client-server

architecture running on the Android operating system. My work on the project focuses on the server

development, design, testing and architecture in Python. The server should be easy to implement for the

client application and hassle-free for the user.

Textbook Marketplace Android Application Design

4

Acknowledgements

I would like to thank Dr. Kenrick Mock for his advice and assistance with this project,

including providing a test server for us. Thanks to Aaron Zhao for working with me on this project and

Dr. Adriano Cavalcanti for the opportunity to create it.

Textbook Marketplace Android Application Design

5

Table of Contents
Chapter 1: Introduction ... 8

1.1 Introduction ... 8

1.2 Application .. 9

1.3 Motivation ... 10

1.4 Recent Developments .. 12

Chapter 2: System Integration and Modeling ... 13

2.1 Technologies and Libraries ... 13

2.2 RESTful API Design ... 14

2.3 Client Authentication .. 15

2.4 MySQL Database Wrapper ... 16

2.5 Timeline and Methodology ... 16

Chapter 3: Testing and User Interface ... 18

3.1 User Interface .. 18

3.2 Testing ... 18

 3.2a Client Testing .. 19

 3.2b Server Testing.. 20

3.3 Agile Methodology ... 22

Chapter 4: Results and Discussion ... 23

4.1 Summary ... 23

4.2 Final Database Schema ... 24

4.3 Software Configuration ... 25

4.4 Results ... 26

Chapter 5: Summary and Conclusion .. 27

5.1 Summary ... 27

5.2 Implications ... 27

5.3 Recommendations ... 28

5.4 Conclusions ... 28

Textbook Marketplace Android Application Design

6

References ... 29

Appendix A – Initial UML Diagram .. 30

Appendix B – Initial Source Code .. 31

Textbook Marketplace Android Application Design

7

Figures

1.1 College textbook price increases ... 9

1.2 Languages and technologies in use ... 10

1.3 Increasing bookstore prices ... 11

1.4 Rental from Amazon .. 11

1.5 Boundless online book rental .. 12

2.1 RESTful API architecture ... 14

2.2 Client authentication with oAuth.. 15

2.3 JSON structure ... 16

2.4 SQL injection avoidance .. 16

2.5 Proposed Gantt chart ... 17

3.1 Network test app ... 19

3.2 Test output .. 20

3.3 Server logging ... 21

3.4 Test script .. 22

3.5 Agile methodology .. 22

4.1 Database schema ... 24

4.2 PuTTY ... 25

4.3 Configuration creation ... 26

4.4 Unauthorized API call.. 26

5.1 HTTPS snippet ... 28

Textbook Marketplace Android Application Design

8

Chapter 1

Introduction

1.1 Introduction

In recent years, the cost of textbooks for students attending higher education has skyrocketed (Figure

1.1) [1]. Students wishing to buy materials for university classes are often required to spend hundreds

of dollars per year on textbooks that may or may not be useful to them after the class is over. In order

to provide a solution for the aforementioned problem, we are proposing an Android application to

provide a marketplace where students can buy and sell textbooks locally with other students. This

application can be of use to college attendees who wish to save money without dealing with shipping or

local bookstore prices. It aims to be easy to use and safe for students to sign up for without risking their

personal information.

Textbook Marketplace Android Application Design

9

Figure 1.1: College textbook price increases from 1978 – 2015 compared to other increases like the

price of a new home. [1]

1.2 Application

This project has two parts, and this document will be focusing mainly on the backend server

implementation of the Textbook marketplace application for technical details. The application will be

developed using two main languages, Java and Python. The Android application will be written in Java,

while the server will be written in Python, running on the Ubuntu distribution of Linux. In the

application, the user will have the ability to both buy and sell textbooks. Listings will be posted on a

per-university basis, and users will be able to browse universities near them using location services.

The server will have a web server running in Python, able to handle multiple clients and send responses

formatted in JSON back (Figure 1.2). Listings will be stored on a database, most likely MySQL or

SQLite. User identification will be done by unique device ID and accounts therefore associated with

devices to streamline the user experience. A hash of the device ID will be stored server-side to provide

interaction with users through sessions if necessary, and to associate users with their listings. In order

to facilitate the listing of textbooks, we will be using Google’s Books API [2] to auto-fill information

by ISBN. Testing for the Android application will be done on device emulators, and any other physical

devices we own (Nexus 6P and Nexus 7). We will tentatively be using the MIT License for our project.

Textbook Marketplace Android Application Design

10

Figure 1.2: Programming languages and technologies that will be used to implement this project.

1.3 Motivation

The average textbook can now cost around $200 to $300 in local university bookstores [3], depending

on the subject, which can be a significant amount to spend for a student who may already be in debt

due to student loans. This project aims to combat these statistics by developing an easy to use

secondhand textbook marketplace as an Android smartphone application. In doing so, we can take

advantage of the characteristics of smartphones and tablets in order to streamline the user experience.

Features like per-device password less sign-on and location-based university selection become

possible. Essentially, this is a way to improve students’ lives, and an outlet for them to discover

textbooks at cheaper prices for the classes they need them for.

Textbook Marketplace Android Application Design

11

Figure 1.3: Increasing prices in bookstores are leading students to find other methods to acquire books

online.

Figure 1.4: Not all books are available to be rented from Amazon.

Textbook Marketplace Android Application Design

12

1.4 Recent Developments

It has already been stated that the price of textbooks has been on the rise for some time now. Many

solutions for offering discount solutions to students have already appeared, with varying success. This

idea is not a new one, but there are several caveats that existing solutions have. Amazon’s textbook

rental service [4] is a great solution, but it requires time to ship the textbook, and it is a rental service,

which means the student will have to ship it back. Also, the service is only available for some books,

and if there is a problem with shipping back the student will be charged the whole price. Other options

like Craigslist provide local buying options, but listings can be inconsistent and lacking in information.

Still other options include Boundless.com (Figure 1.5) [5], which not only provide a marketplace for

buying and selling, but are pushing to open-source educational materials. The problem with this,

however, is adoption at universities, which would need to lose profits from textbook sales in order to

implement.

Our solution allows for textbooks and potentially other resources (clickers, etc) to be listed and sold

locally, with assurance they will work for the classes, if any, which are associated with the listing.

Figure 1.5: Boundless.com provides a marketplace for textbooks, but their mission to replace

textbooks has yet to appear in many schools.

Textbook Marketplace Android Application Design

13

Chapter 2

System Integration and Modeling

2.1 Technologies and Libraries

The different technologies in use must all come together in harmony to produce a working final

product. The Android application will be talking to the server via HTTP requests, so a web server

framework is needed. For this, I chose Google’s webapp2 Python framework [6]. It can run an HTTP

server and handle POST and GET requests. We won’t be using Google’s App Engine cloud platform,

but webapp2 is still available for use outside of it.

When we proposed the application to our supervisor, Dr. Mock, he was able to get us access to a server

at UAA to run on. On this server, he installed a MySQL instance. In order to interface with it to store

data, I used the PyMySQL module [7] and constructed a wrapper for the server to use. The server

design implemented is a REST-style (REpresentational State Transfer) HTTP server API with database

access via POST and GET requests, and is detailed in the next section.

Textbook Marketplace Android Application Design

14

2.2 RESTful API Design

It is important to adhere to standards when designing software, and Application Programming

Interfaces or APIs are no different. By creating and documenting an API for the server, it can be easily

accessed by the clients and expanded upon in the future. Arguably the most important part of this type

of API is its statelessness. Therefore, it will use the REST API guidelines where necessary (Figure 2.1).

The critical part is this - in one request, the server or client will have all the information needed to

understand the request and return a response if necessary [8]. This way, the implementation is fairly

simple, and the groundwork is already there in the form of a webserver. The data transferred from

server to client will be in JSON – JavaScript Object Notation – format (Figure 2.3). This is also a

standard and is commonly used with RESTful APIs.

Figure 2.1: Proposed RESTful API implementation.

Textbook Marketplace Android Application Design

15

2.3 Client Authentication

Figure 2.2: How oAuth helps to authenticate clients.

In order to avoid abuse or attacks on the server, we felt it necessary to implement some form of client

authentication. Preferably, all requests to the server would originate from our application. In this case,

verification with a username and password would usually be necessary. In our project, however, we

didn’t want remembering credentials to impact our user experience. So we needed a solution, and one

that would work with a RESTful API. Luckily, Google provides an authentication method to do just

this with oAuth. Our application will use oAuth to get a token from Google for a registered application.

The client app will be compiled with our server’s cert inside. The user will, upon opening the app,

select an email to link to our application. Then, whenever a call to the server is made, the token will be

sent to the server and verified with Google’s public key (Figure 2.2) [9]. This provides an easy-to-use

sign-in interface for the user and secure authentication for our app at the same time.

Textbook Marketplace Android Application Design

16

Figure 2.3: JSON’s data structure is easily human-readable as well as simple for machines to parse.

[10]

2.4 MySQL Database Wrapper

The final piece of the server puzzle is how to communicate with the MySQL database. My approach

was one that provided a lot of flexibility – I templated some common SQL commands and defined

these as the standard for what actions should be allowed over REST. I designed a wrapper class for

PyMySQL called RESTWrapper that is easy to use and keeps clutter out of code typically caused by

SQL integration. It’s also extremely important when accepting strings sent by clients (even if they are

authenticated) to sanitize inputs. The first thing I did when creating the wrapper was sanitize the inputs

(Figure 2.4). The main server imports and uses the wrapper to get SQL results in just a few lines.

Figure 2.4: Securing SQL servers against injection attacks is important whenever inputs can be

modified.

2.5 Timeline and Methodology

This project is an effort between myself and another CS student, and we hope to seamlessly integrate our

projects to work together. The timeline in Figure 2.5 shows that we hope to be testing and debugging as

soon as all the features are finished in April. To assist with this, the methodology used for the project

will be an agile methodology. As we work, we share progress and show work to each other as we

complete it. We will also be meeting with our advisor periodically to showcase our progress and

application in this manner.

Textbook Marketplace Android Application Design

17

Figure 2.5: Proposed Gantt chart for the project.

Textbook Marketplace Android Application Design

18

Chapter 3

Testing and User Interface

3.1 User Interface

Because this is a server application, there really is not much of a user interface to speak of. It is meant to

be configured and then run 24/7. The most that could be classified as an interface would be the API or

the configuration file, but even the former isn’t seen by the user as it’s obfuscated by the client app. So,

then, the real in-depth conversation will be on the companion document to this one by my partner Aaron

Zhao, as he designed the user interface for the client application.

3.2 Testing

Testing is an extremely important part of any project, and it’s very important here. Since there are so

many parts that need to line up and work properly, it’s essential to test constantly during development

and well after. When developing a server, there is somewhat of a catch-22 situation where you need to

test, but you don’t have the client finished yet. So, I took it upon myself to rapid prototype some Android

net code to test the server out [11]. This section will explain how I tested the client and server in lieu of

a proper client.

Textbook Marketplace Android Application Design

19

3.2a Client Testing

In order to get feedback about development without a client app, I had to come up with an improvised

way to establish communication with my server from an Android device. I ended up writing some

network code to make a HTTP GET request on our server (Figure 3.1) [12].

Figure 3.1: The barebones network test app.

This app turned out to be invaluable in not only testing the server but also debugging possible issues

Android network code can run into. For example, when the server returns a 401 Unauthorized, certain

implementations of network code will raise a filenotfound IOexception [13]. This was an issue as the

server returns a 401 if the token is incorrect.

Textbook Marketplace Android Application Design

20

3.2b Server Testing

The server code implements some tests to ensure the SQL wrapper properly works. It attempts to do an

insert with varying numbers of parameters on a test database table. If this succeeds, it will perform select

statements that will return the input values. The current version of the script uses assert statements to test

if the returns from the wrapper methods are correct (Figure 3.2) [14].

Figure 3.2: The output of the test script, part of which can be seen in Figure 3.4. The highlighted area

shows an AssertionError.

It was important to also add debug statements to the server in order to observe the data being sent by the

client application (Figure 3.3). A lot of development was done with quick edits in GNU Nano over SSH

due to the nature of the server.

Textbook Marketplace Android Application Design

21

Figure 3.3: HTTP GET requests coming from the test app.

3.3 Agile Methodology

Adopting the agile methodology helped push our project along especially with proper tests established

before code was written. Being able to run tests against new code pushed my development along faster

than code-first. It also influenced my coding style to be more modular in nature for the whole project. In

terms of project management, it’s a useful style but in coding it helps to be concise and clearer about

what you are writing [15].

Textbook Marketplace Android Application Design

22

Figure 3.4: Part of the test script on the server application.

Figure 3.5: Agile development in action.

Textbook Marketplace Android Application Design

23

Chapter 4

Results and Discussion

4.1 Summary

The Android textbook marketplace app is a project created to facilitate the buying and selling of

textbooks between students. In this project, I was responsible for the development of the server which

would store sales and interact with the Android app. I also wrote the basic functions for the app’s network

code for communicating with the server.

This server software was created to be easy to understand and extendable. Some functions would most

likely be useful outside of this software, such as the MySQL Python wrapper. In this chapter, the final

database schema will be presented and the configuration of the server will be explained.

4.2 Final Database Schema

Textbook Marketplace Android Application Design

24

Figure 4.1: The final database schema.

Textbook Marketplace Android Application Design

25

The final schema (Figure 4.1) for the MySQL database consisted of three tables. A table to store sales, a

table to store a user’s watched sales, and a table to store messages between users. These tables are updated

through use of the server’s RESTful web API. In order to avoid malicious users inserting bad records

into our database, a Google oAuth token is required as a URL parameter. Furthermore, the server will

only allow users who created a record to delete it. The full schema is also on the project GitHub page.

4.3 Software Configuration

Figure 4.2: The PuTTY main window.

This software is meant to be easy to install and use. It is open source and uses the MIT License. In order

to administrate the server, all one needs is an SSH client, such as PuTTY for Windows. (Figure 4.2) .

The server is run completely from the command line. As it requires some configuration, however, the

main server file will provide a way for the user to create the configuration file using Python’s

ConfigParser module. The server will need to have access to a MySQL database with the provided

schema, a python installation, and the dependencies listed on the GitHub. Once all these requirements

are met, running the server will create the required configuration file (Figure 4.3).

Textbook Marketplace Android Application Design

26

Figure 4.3: Interactively creating a configuration file.

4.4 Results

Overall the server works well. It is designed in such a way that it can perform any necessary action with

only one API call. This is known as a REST API. It processes queries and then returns them to the client

with a result and error field so the client knows what went wrong (Figure 4.4). It is crash-resistant and

outputs verbose errors to assist in debugging the client application on both the client and server side. It

is easy to see why this style of server is an industry standard for ease of use and development.

Figure 4.4: Trying to hit the API from a web browser.

Textbook Marketplace Android Application Design

27

Chapter 5

Summary and Conclusion

5.1 Summary

As mentioned many times before, the Android Textbook Marketplace App is by students, for students.

It is a collaborative effort between myself and Aaron Zhao to help relieve some of the financial pressure

students feel during college. It will allow students to buy and sell textbooks from each other in the same

university area, and use information like course codes to assist them.

It has many features that simplify use for the user, so they can feel secure about knowing what

information they provide and to whom. It can be used with the server we created, or, with the included

documentation, a different environment may be developed to even better serve students.

5.2 Implications

Our main goal with this Android application is to help students save money. There are no figures or

numbers, since development has just completed, but if we ever release it, we expect it could help students

Textbook Marketplace Android Application Design

28

save a significant amount of money. Its ease of use and simple UI design with no passwords required,

and the ability to scan in a book’s ISBN with the camera help to make users feel more comfortable using

it over other services like Craigslist.

5.3 Recommendations

Unfortunately, we did not have enough time to complete all the features we would have liked in the app.

It is functional, but not very secure, in my opinion. Requests to the server are sent in plaintext,

unencrypted. In order to release this application on the Google Play Store, we would have to implement

HTTPS on the server side. However, this is very simple to do with the current design. Once a signed

certificate is acquired, the main code would just have to be modified to run the server with that certificate.

If this is done, I am confident this app would be ready to be released. Other features that could be added

include a map to display sales instead of just listing what is nearby, or push notifications for messages.

These are just some examples for future developers, or things that we may implement later.

Figure 5.1: The small code snippet for HTTPS implementation.

5.4 Conclusions

This software is only half of an entire project. Without it, the client app would not have network

connectivity or be very useful, and without the client, the server would have no content to store. Not only

is this software useful for the app it was designed for, but it is entirely open source, and can be built upon

for other projects. We hope that our code will be used to write better server applications that use Python

and MySQL, and if we publish our app, then we will put our all into making sure students are aware of

it.

Textbook Marketplace Android Application Design

29

References
[1] Perry, M. J. (2015, July 26). The new era of the $400 college textbook, which is part of the

unsustainable higher education bubble - AEI. Retrieved from https://www.aei.org/publication/the-new-

era-of-the-400-college-textbook-which-is-part-of-the-unsustainable-higher-education-bubble/

[2] Google Books APIs | Google Developers. (n.d.). Retrieved from

https://developers.google.com/books/

[3] Kurtzleben, D. (2012, August 8). How your textbook dollars are divvied up. Retrieved from

http://www.usnews.com/news/articles/2012/08/28/how-your-textbook-dollars-are-divvied-up

[4] Amazon.com: Textbook Rentals, Rent Textbooks. (n.d.). Retrieved from

http://www.amazon.com/b?ie=UTF8&node=5657188011

[5] Boundless for Students. (n.d.). Retrieved from https://www.boundless.com/students/

[6] Explaining the webapp2 Framework. (n.d.). Retrieved from

https://cloud.google.com/appengine/docs/python/gettingstartedpython27/usingwebapp

[7] PyMySQL/PyMySQL. (n.d.). Retrieved from https://github.com/PyMySQL/PyMySQL

[8] Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures

University of California, Irvine. Retrieved from

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[9] Authorizing with Google for REST APIs. (n.d.). Retrieved from

https://developers.google.com/android/guides/http-auth#obtain

[10] Introducing JSON. (n.d.). Retrieved from http://www.json.org/

[11] Android Bootstrap. (n.d.). Retrieved from http://www.androidbootstrap.com/

[12] Sending a Simple Request. (n.d.). Retrieved from

http://developer.android.com/training/volley/simple.html

[13] FileNotFoundException. (n.d.). Retrieved from

http://developer.android.com/reference/java/io/FileNotFoundException.html

[14] Using Assertions Effectively. (n.d.). Retrieved from

https://wiki.python.org/moin/UsingAssertionsEffectively

[15] Rasmusson, J. (2010). The agile samurai: How agile masters deliver great software. Raleigh, NC:

The Pragmatic Bookshelf.

https://www.aei.org/publication/the-new-era-of-the-400-college-textbook-which-is-part-of-the-unsustainable-higher-education-bubble/
https://www.aei.org/publication/the-new-era-of-the-400-college-textbook-which-is-part-of-the-unsustainable-higher-education-bubble/
http://www.usnews.com/news/articles/2012/08/28/how-your-textbook-dollars-are-divvied-up
http://www.amazon.com/b?ie=UTF8&node=5657188011
https://www.boundless.com/students/
https://cloud.google.com/appengine/docs/python/gettingstartedpython27/usingwebapp
https://github.com/PyMySQL/PyMySQL
http://www.json.org/
http://www.androidbootstrap.com/
http://developer.android.com/training/volley/simple.html
http://developer.android.com/reference/java/io/FileNotFoundException.html

Textbook Marketplace Android Application Design

30

Appendix A – Initial UML Diagram

Textbook Marketplace Android Application Design

31

Appendix B – Source Code

App Demo Video: https://www.youtube.com/watch?v=DpWqz-uhsrY

Server GitHub: https://github.com/espogabe/Textbook-Server

App GitHub: https://github.com/Aaron-Zhao/Textbookbns

#!/usr/bin/env python

Copyright (c) 2016 Aaron Zhao

Copyright (c) 2016 Gabriel Esposito

See LICENSE for details.

"""

REST API for Android Textbook Marketplace App.

"""

import os

import json

import decimal

import ConfigParser

import traceback

import webapp2

from oauth2client import crypt, client

from sqlwrapper import RESTWrapper, scrub

from helpers import point_near, dec_default, create_config

config = ConfigParser.ConfigParser()

Make sure server config exists, if not, set it up

if not os.path.isfile('server.cfg'):

 create_config()

config.read('server.cfg')

SQLuser = config.get('mysql', 'user')

SQLpass = config.get('mysql', 'pass')

SQLHost = config.get('mysql', 'host')

SQLDB = config.get('mysql', 'db')

oAuthServerClientID = config.get('oAuth', 'server_client_id')

oAuthAndroidClientID = config.get('oAuth', 'android_client_id')

ServerHost = config.get('http', 'host')

ServerPort = config.get('http', 'port')

class AppAPI(webapp2.RequestHandler):

 """Request handler API class. Takes care of GET and POST requests."""

 def verify_oauth_token(self, token):

 """Verify the oAuth token with Google"""

 try:

 print "Verifying token"

 token = client.verify_id_token(token, oAuthServerClientID)

 print 'Token: %s' % token

https://www.youtube.com/watch?v=DpWqz-uhsrY
https://github.com/espogabe/Textbook-Server
https://github.com/Aaron-Zhao/Textbookbns

Textbook Marketplace Android Application Design

32

 if token['aud'] != oAuthServerClientID:

 raise crypt.AppIdentityError("Unrecognized server.")

 if token['azp'] != oAuthAndroidClientID:

 raise crypt.AppIdentityError("Unrecognized client.")

 if token['iss'] not in ['accounts.google.com', 'https://accounts.google.com']:

 raise crypt.AppIdentityError("Wrong Issuer.")

 return True

 except Exception, e:

 print e

 print traceback.format_exc()

 return False

 def verify_permissions(self, req):

 """Essentially allow everyone to read, but only the creator of a record can

write/delete"""

 if req['action'] in ['delete', 'update']:

 if 'SellerID' in req.keys():

 if req['SellerID'] == get_sellerid(req['token']):

 return True

 return False

 else:

 return True

 def get(self):

 """Handle GET requests by passing to SQL wrapper. Respond with JSON."""

 self.response.headers['Content-Type'] = 'application/json'

 print self.request.GET

 try:

 if self.verify_oauth_token(self.request.GET['token']) and

self.verify_permissions(self.request.GET):

 action = self.request.GET['action']

 if action in ['select', 'delete', 'insert', 'update']:

 table = self.request.GET['table']

 wr = RESTWrapper(SQLHost, SQLuser, SQLpass, SQLDB)

 sql_args = self.request.GET

 del sql_args['token']

 del sql_args['action']

 del sql_args['table']

 res = wr.query(action, table, **sql_args)

 if action in ['select', 'insert']:

 self.response.write(json.dumps({"error": "", "message": res},

default=dec_default))

 else:

 self.response.write(json.dumps({"error": "", "message":

"Successful"}))

 elif action == 'getsalesnearby':

 lat = double(scrub(self.request.GET['lat']))

 lng = double(scrub(self.request.GET['long']))

 radius = int(scrub(self.request.GET['r']))

 wr = RESTWrapper(SQLHost, SQLuser, SQLpass, SQLDB)

Textbook Marketplace Android Application Design

33

 res = wr.query_passthru("""SELECT * FROM Sale WHERE Lat IS NOT NULL AND

Lng IS NOT NULL""")

 nearest = []

 # Find sales within r miles of user

 for row in res:

 if point_near(lat, lng, row['Lat'], row['Lng'], r):

 nearest.append(row)

 self.response.write(json.dumps({"error": "", "message": nearest},

default=dec_default))

 else:

 self.response.write(json.dumps({"error": "Invalid action", "message":

""}))

 else:

 self.response.set_status(401)

 self.response.write(json.dumps({"error": "Unauthorized token or bad

permissions (You can only delete and update records you created)", "message": ""}))

 except KeyError, e:

 print e

 print traceback.format_exc()

 self.response.write(json.dumps({"error": "Malformed GET request", "message":

""}))

 except Exception, e:

 print e

 print traceback.format_exc()

 self.response.write(json.dumps({"error": str(e), "message": ""}))

app = webapp2.WSGIApplication([

 ('/api', AppAPI),

], debug=True)

def main():

 from paste import httpserver

 httpserver.serve(app, host=ServerHost, port=ServerPort)

 # TODO: HTTPS

 # ssl_pem="cert/self-signed.pem"

if __name__ == '__main__':

 main()

